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To all those times where a data store has irritated you, and all the hours you spent fscking

the fscking disk, and those long hours spent mkfsing with ext2, please remember those bad

blocks that made ReiserV3 go to goo.

When CVS irritated you heaps, its branching has been known to make grown men weep.

But most of all, we must remember the accidental delete and save that left you without

that important something, that you just couldn’t get. . .

And that paragraph that you had last week, which you just wish you had now. . .

This thesis is definitely not dedicated to fsck.

iii
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Abstract

The Walnut Kernel(Castro, 1996) is a persistent, capability based operating system kernel
developed at and extending the previous work in the School of Computer Science and
Software Engineering at Monash University. Building on work in the Password-Capability
System(Anderson, Pose and Wallace, 1986), Walnut has some very unique features such
as its capability architecture, charging scheme and persistence. Walnut requires a slightly
specialised set of features from its equivalent of a file system, the Walnut object store.
Various deficiencies with the original design were found, and it was decided that alternative
systems should be explored.

This thesis extends initial work on the Walnut kernel by examining the issues related to its
object store. Other operating systems use a file system as their method of on disk storage
and various file systems are closely examined for their efficiency, reliability and possible
applicability to a Walnut system.

As processes are persistent in Walnut, care must be taken to ensure these can be restored
from disk in a consistent state. That is, the image on disk should match the appearance of
these objects at a specific time, in essence a “snapshot” of the process and all objects it is
using. We call this the problem of inter-object dependencies as the process object depends
on a specific version of the objects it has loaded.

The addition of the revision tracking of objects is examined with the aim towards helping
solve the problem of inter-object dependencies and remove the consequences of user error.
A discussion on the possible Walnut interface and possible security implications is included
and it is found that there needs to be further exploration of “Temporal Windowing” before
access to previous revisions of objects can be done in both a flexible and secure manner.

The near complete design of a new object store for the Walnut is presented providing
a flexible volume format that can be extended to encompass future ideas and features.
Knowledge gained from other systems helps us in determining that this system has the
capacity to fulfil the listed requirements. A proof of concept implementation in a simulation
environment is presented with support for most of the features discussed and reasonable
performance considering its stage in development. The implementation has been written so
that it can be extended and eventually incorporated into Walnut.
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Chapter 1

Introduction

The Walnut Kernel(Castro, 1996) is a persistent, capability based operating system kernel
developed at and extending the previous work in the School of Computer Science and
Software Engineering at Monash University. Building on work in the Password-Capability
System(Anderson et al., 1986), Walnut has some very unique features such as its capability
architecture, charging scheme and persistence.

The basic unit of storage in Walnut is an object. A capability gives the holder a set of access
rights on a view of an object. A view can be all, or part of an object. A process accesses
objects by asking the kernel to load a capability, and if it is valid, the kernel memory maps
the view into the process’ address space.

From examining the current implementation and design of The Walnut Kernel(Castro, 1996)
it became apparent that there was significant room for improvement in how Walnut stored
objects on disk as the previous method lacked features that were important for Walnut to
be a fast, reliable and resilient system.

Several file systems for UNIX like systems have solved some of the problems with the current
Walnut object store in a variety of ways. Although varying in complexity and features, no
existing system really covered all of the requirements of a Walnut system. This is partly
due to the fact that in Walnut, processes are persistent.

Processes being persistent raises several problems in relation to restoring them after a crash.
If there is to be a way to automatically resume processes, there needs to be a way of quickly
locating process objects. Also, to successfully restore a process, you must restore all objects
it was interacting with to the exact same state as they were when you wrote the process
object to disk.

Other problems include: identifying a volume, tracking free disk space, tracking where
objects are stored on disk, recording information about objects, dealing with object meta-
data, ensuring consistency and tracking where information about objects is located on disk.
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Two major additions to the Walnut object store are explored: the addition of arbitrary
amounts of meta-data and tracking revisions to objects. The addition of these extra features
to the Walnut object store both raise new research topics. Access control to meta-data can
largely be reduced to a choice of policy but the issue of access to different revisions of an
object, the problem of temporal windowing requires significant further exploration than
what can be provided here.

This thesis focuses on the design and implementation issues of a fast, efficient, feature
complete and extensible object store suitable for Walnut. Design choices and decisions are
examined and evaluated along with new approaches and variations to problems in object
store design.
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Chapter 2

Literature Review

The Walnut Kernel(Castro, 1996) is a persistent, capability based operating system de-
veloped at and extending the previous work in the School of Computer Science and Soft-
ware Engineering at Monash University. Building on work in the Password-Capability
System(Anderson et al., 1986), Walnut has some unique features such as its capability ar-
chitecture, charging scheme and persistence. Walnut requires a slightly specialised set of
features from its equivalent of a file system, the Walnut object store. Various deficiencies
with the original design were found, and it was decided that alternative systems should be
explored.

Most modern Operating Systems base their file semantics on those of 4.4BSD UNIX with a
largely POSIX compliant programmers interface. This system is well tested and its faults
and shortcomings are well known. However, many advances in data storage methods have
been made on such systems and they deserve close attention.

2.1 Persistent Systems

Persistence is the property of a system where created objects continue to exist and retain
their values between runs of the system. An example of a persistent system is a persistent
programming language, in such a language the contents of variables are preserved across
runs of the program.

A persistent operating system is different from most popular operating systems as (ideally)
no state is lost after an (expected or unexpected) system restart. In Walnut, processes are
first class objects and are backed to disk. Although persistence has existed in various forms
for a long time, occasionally making its way into a production system(Liedtke, 1993), they
have not received widespread usage. More recently, there has been an interest in persistence
in distributed systems(Elnozahy, Johnson and Zwaenepoel, 1992). There have been many
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interesting, and rather complete, persistent research operating systems developed including
the focus of our research, The Walnut Kernel.

2.1.1 The Walnut Kernel

The Walnut Kernel(Castro, 1996) builds on previous work in the Password-Capability
System(Anderson et al., 1986) to create a persistent and secure operating system for gen-
eral use. Walnut is designed to be portable1 across different architectures but currently
only runs on the Intel i486 compatible CPUs with limited support for other PC periph-
eral hardware. It has been shown that it is possible to implement ANSI stdio compatible
inter-process communication to Walnut(Kopp, 1996) and gain most of the functionality of
a modern UNIX like Inter-Process Communications (IPC) system.

The basic unit of storage abstraction in Walnut is an object and all data made a available
to user programs is made available through objects. An object is a series of pages of which
any number of these are memory mapped into a process’ address space. In the current
implementation, the page size is that of the host CPU architecture. This design makes it
very difficult to exchange data between architectures with dissimilar page sizes. This is a
problem and one which future work on Walnut will one day have to address.

Volumes represent physical media on which Walnut Objects are stored. In the current
system, Objects are permanently associated with a volume (i.e. you cannot transparently
move an object to another volume) and objects cannot span more than one volume. Each
volume has a unique identifier, known as the volume number. The current system only
allows 32bits for the volume number, so if Walnut were to become widely used, collisions
are bound to occur. There is currently no facility to deal with this.

A Serial number is the unique identifier for an object on a volume - rather similar to the
UNIX i-node number. A serial is only unique for a specific volume and should be as random
as possible as part of Walnut’s security is the difficulty of guessing valid object identifiers.

A Password Capability is associated with a set of attributes: a set of rights and a view.
The capability is used to identify what access permissions the holder has to an object.

Figure 2.1: Structure of a Walnut Kernel Capability

All Walnut objects and processes (except the init process) are persistent. It is thought(Wallace,
Pose, Castro, Kopp, Pringle, Gunawan and Jan..., 2003) that any clean up of user device

1Although the current implementation lacks certain infrastructure and code design to accomplish this
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drivers could either be handled by the init process on startup or by receiving a specific
type of message on system reboot.

Walnut objects have the following properties(Castro, 1996):

• They are permanently associated with a volume. They cannot be moved to another
volume or span more than one volume.

• Pages are allocated on the first reference to them.

• If the number of guaranteed pages has been exceeded, and there are unreserved pages
on the volume, then additional pages may be allocated to the object.

• If there are not any unreserved pages available, an exception will occur.

• Attempts to access beyond the limit of an object will cause an exception.

• The main memory acts as a cache of objects.

The backup and restoration of individual objects becomes problematic when an object is
permanently associated with one volume (as it is in Walnut). Unsolved problems include:
how to backup a volume without compromising the security of the system, how to restore
a volume without compromising system security, how to backup a single object and how to
restore a single object (especially if the original has been removed) without compromising
security. Currently, the accepted attitude(Wallace et al., 2003) is that it is each users duty
to back up their own objects. They could do this by periodically running a backup process
and giving it capabilities to objects they want backed up. This does not, however, facilitate
restoration of objects and capabilities.

Walnut builds on the Password-Capability System’s(Anderson et al., 1986) concept of rental,
which is used for the garbage collection of objects(Wallace and Pose, 1990). To continue
to exist, an object must be able to afford to pay for the resources it uses. Each object has
an amount of money (stored in its money word) which may be drawn by those holding
capabilities with withdraw rights or by the Walnut Kernel for the use of storage space.
Processes also have a cash word which stores money used to pay for kernel services. The
rent collector process periodically deducts rent for disk space occupied by objects. It is
commonly accepted(Wallace et al., 2003) that the rent collector should be flexible, possibly
charging different amounts at times of high load or high disk usage.

Charging for services also increases the security of the system(Wallace and Pose, 1990). If
each attempt to load a capability is charged for, then attempting to guess a valid capability
becomes an extremely expensive operation. It is thought(Wallace et al., 2003) that charging
more for failed attempts could also be useful.
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Walnut Disk Structures

A Walnut Volume has three components: the Disk-ID-block, the bitmap and all other
blocks which are used for storing objects. It is important to note that Walnut does not
currently provide any form of journaling, consistency checking utility or guaranteed syn-
chronous updates. This means that robustness of the current Walnut data store does not
compare favourably to that of modern file systems in the event of a crash, reflecting its
origins as a research platform.

On disk, Walnut objects are split into two parts: the body and the dope. The dope is
all the system information related to an object including the object Header, the capability
table and a set of page tables. The body is the contents of the object. The dope may grow
or shrink in size separately from that of the body. A process object is the only type which
enforces structure on the body but apart from that there is no distinction between processes
and other objects.

Walnut does not currently keep a separate index data structure for translating object serials
into disk locations of the header blocks. Instead, Walnut uses the least significant bits of
the object’s serial number as the block number of the first header block of the object.
To prevent a possible attack on the security of the system by forging a serial number and
a first header block to gain unauthorised access to other objects, the volume bitmap
tracks which blocks are legitimate first header blocks. The bitmap contains a two bit value
describing each block on the volume. A block can be free, a first header block, in use
or bad. A full diagram of the walnut disk structure can be seen in Figure 2.2.

This method of locating objects has several drawbacks; the rent collector needs to operate
on all objects on a volume and the only way to currently do this is to search the volume
bitmap for blocks marked as header blocks, seek to that disk block, read the header blocks
for the object, update the money word and write the header blocks back to disk. This is
going to cause a lot of seeking and become problematic during periods of high disk IO. The
current model also reduces what serial numbers you can store on a specific volume without
having collisions with other object headers or data blocks.

The most critical drawback of this indexless scheme is the problem of automatically resum-
ing of processes. As there is no quick way to locate process objects on a volume, the header
blocks for all objects on a volume must be read and examined to see if they represent a
process. On small volumes, this IO is fairly insignificant, but with the size of today’s disks
and the number of objects that todays users store on disk, the amount of IO needed to
query each object on a volume to determine if it’s a process becomes staggering.

As the implementation of a UNIX like environment on Walnut is possible(Kopp, 1996) and
is generally viewed as the quickest and most effective way to port software to the system,
a comparison with the workloads of other UNIX based systems would seem fair. It should
also be noted that a 4.2BSD environment was implemented on Walnut’s predecessor, the
Multi although nothing was ever published about this achievement. A quick survey on the
number of files present on a variety of UNIX based systems (Table 2.1.1) shows that the



7

Hashed Serial
Object Dope

Object Body

0

n

End of Volume

Object Dope
Object Body

Object Body

Object Dope
Hashed Serial

Hashed Serial

Disk Id Block
Block Bitmap

1 Free Space

Used Space

Walnut On−Disk layout

Key
Block Number

Figure 2.2: Walnut Disk Layout
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Machine Used Disk Space Number of Objects (files)

pheonix 1.7GB 109,365

saturn 23GB 299,528

crashtestdummy 810MB 44,344

willster 34GB 422,095

cancer 71.3GB 3,065,590

yoyo 35.8GB 1257217
The machines pheonix, saturn, crashtestdummy, cancer and willster all run Debian

GNU/Linux and are my personal machines while yoyo is a shared system with 50 to 60
regularly active users and several hundred rather inactive users.

Figure 2.3: Survey of disk usage on various UNIX based systems

number of objects even on small disks is quite large. With even the smallest disk examined,
scanning header blocks for over 100,000 objects will consume significant disk bandwidth
and even in the best conditions for disk I/O, this would take more than a few seconds of
real time.

There is one area in which the current system completely fails and that is providing any
form of inter-object consistency after an unclean shutdown. Since persistence is meant to
be transparent to processes, the data they access should not change between the process
being suspended and the process being resumed. This means that the image on disk must
be a snapshot of the process and all of its data at a specific moment in time as any variation
would have the same effect of modifying a running processes data which will in all likelihood
lead to unpredictable results(Smith, 2003).

The Current State of the Walnut Kernel

The current Walnut implementation is unfortunately not up to the standard of other oper-
ating system projects and strongly shows its immaturity. There has been little work on the
kernel since its original implementation and a lot of knowledge about how parts of it work
has been lost over time. Although recent work by Stanley Gunawan has updated the code
and build system so that development can be done on recent releases of FreeBSD (namely
4.4 and 4.5), problems have arisen in trying to get user mode processes to execute. There
is very little hardware support and any change in hardware configuration requires source
code modifications.

The Walnut source code is sparsely documented and is believed(Wallace et al., 2003)) to use
“reserved” and “unused” fields in some data structures for internal scratch space. There
is an overuse of constructs such as goto that have the effect of greatly obsfucating large
parts of the kernel. While such constructs are can be useful in speed optimisation and
occasionally even code clarity, this is not the case in much of the Walnut code. In many of
the subsystems it is a complex operation to understand what is being done and how it is
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being done. If a port to a 64bit architecture were to be attempted, almost the entire code
base would need to be rewritten or closely audited to remove assumptions on word size.

Walnut has proven great theory, spawning several papers and other projects but the cur-
rent implementation would need a large amount of work, or indeed a total rewrite before
extensions to the original design could be pursued within a reasonable time frame on the
existing code-base.

2.1.2 Mungi

One of the larger research projects regarding persistent systems is Mungi. Mungi(Heiser,
Elphinstone, Vochteloo, Russell and Liedtke, 1998) is a persistent, Single-Address-Space
Operating System (SASOS) developed on top of the L4(Ceelen, 2002) Micro kernel at the
University of New South Wales. The system was designed to be a pure SASOS without
sacrificing features such as protection, encapsulation and orthogonal persistence. The base
abstractions that Mungi provides are: capability, object, task, thread and protection do-
main. Mungi also has the concept of a bank account which is (similar to Walnut’s concept
of money) is used to limit and control resource use.

Like Walnut, an object in Mungi is the basic storage abstraction. All objects exist within
a 64bit address space and since Mungi was designed for 64bit platforms (such as MIPS
and Alpha) the single address space was not deemed an unreasonable limitation on the
storage capacity of a single system. The single address space approach does mean that an
implementation on a 32 bit architecture would Beverly limit the amount of storage accessible
compared to modern standards.

Mungi attempts to improve efficiency by having three classes of data objects:

• Transient and unshared

• Transient and shared

• Persistent

Persistent system purists would argue that Mungi is not a pure persistent system due to
its support for non-persistent objects. Mungi supporters would rebut this with claims of
performance improvements. Since there is not a variety of completed persistent systems to
perform real-world performance tests, the claims of added performance cannot be proven
over other techniques. It has been indicated(Ceelen, 2002) that transient objects in Mungi
would only be used for device drivers and other objects which cannot easily be restored
after a system reboot.

A Mungi object exists until it is explicitly destroyed. For each process, Mungi keeps a
kill list of objects which that process has created. When the process finishes, Mungi will
remove all processes on the kill list. There exists a system call to remove an object from
the kill list so that it may outlive its creator. This approach contrasts sharply with the
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Walnut view of money and paying for services (including storage). The Mungi approach
means that it is possible for a buggy process to create objects, not reference them and have
them exist for long periods of time (or forever if the process never quits). In Walnut, these
objects would be garbage collected if they are unable to pay rent.

Unfortunately, the currently available implementations of Mungi do not have persistence
implemented. Additionally, the requirement of 64bit hardware supported by L4/MIPS or
L4/Alpha greatly reduces the range of machines able to run Mungi and totally eliminate
commodity PC hardware.

2.1.3 Consistency in Persistent Systems

One of the main problems with persistent systems is how the on disk representation of the
system should be kept consistent in the event of a crash. Since processes are persistent and
will usually reference objects other than themselves, it is important that these objects were
all written to disk in one atomic operation, or data a process is using could mysteriously
change or disappear (due to it not have being flushed to disk)(Smith, 2003).

One method to ensure on disk consistency is Checkpointing(Skoglund, Ceelen and Lidtke,
2000). Checkpointing works by taking a snapshot of the contents of memory at a specific
moment and writing that snapshot atomically to disk. The last (successful) snapshot written
to disk will be the state in which the system is restored.

It has been shown(Elnozahy et al., 1992) with distributed applications that the overhead
for checkpointing can be quite minimal (less than 1% for six out of eight applications, with
the highest overhead at 5.8%). It is natural that incremental checkpointing is used
to reduce the number of disk writes for each snapshot. Using copy-on-write memory
protection, it is possible for a snapshot to be written to disk while processes continue to
execute, hence having asynchronous checkpointing(III and Singhal, 1993). Such techniques
were also raised during Wallace et al. (2003) were thought to be worth investigating for
Walnut.

In the worst case scenario, each time a snapshot is taken (Elnozahy et al. (1992) used two
minutes as an interval) the entire contents of memory is dirty and must be written to disk.
It is possible that such methods as partially writing snapshots in between the time they are
taken or a variation in time when snapshots are taken could help alleviate this bottleneck.
It has also been shown that relaxing consistency(Janssens and Fuchs, 1993) can help in
reducing the overhead of checkpointing.

2.2 Existing File Systems

Since most popular Operating Systems use an explicit storage system and a variation on
UNIX file semantics, an examination of how file systems work, their performance and reli-
ability could help in understanding what features a Walnut data store requires.
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Although there has been many papers and books published on data structures, using these
structures on disk is rather different than using them in memory. The overwhelming ma-
jority of texts focus on in-memory structures and not on how to optimise these for use on
disk. Folk and Zoellick (1987) discusses several of the differences between data structures
in memory and on disk (within files). It is clear from Folk and Zoellick (1987) that many
trade offs are made in the design of file formats, it also becomes clear that it is the same
way with file systems.

2.2.1 BSD FFS

The Berkeley Software Distribution’s Fast File System (FFS)(A Fast File System for UNIX,
1984) dramatically improved file system performance over existing systems. Improvements
over previous UNIX File Systems introduced by FFS include:

• Larger block sizes (at least 4096 bytes)

• the use of cylinder groups to exploit the physical properties of a disk to reduce seek
times.

• improved reliability though careful ordering of file system meta-data writes

A lot of the performance gain of FFS was due to the use of larger disk blocks (4096 byte
or larger instead of the more common 512 byte), allowing more files to fit into a single disk
read. However, with 4096 byte blocks A Fast File System for UNIX (1984) reported that
with a set of files about 775MB in size, about 45.6% of the disk space was used by the file
system. The solution FFS chose was to split each block into fragments of 512 bytes (or
more commonly 1024 bytes) and allocate fragments instead of disk blocks. This allowed the
speed increases of having a larger block size while not wasting space with small files.

FFS keeps with the basic UNIX file system abstractions. Each i-node represents a file on
disk, it contains information such as the length of the file (in bytes) and what disk blocks
are being used by it. FFS i-nodes have direct, indirect and doubly indirect block pointers
(See Figure 2.4 (Card, Ts’o and Tweedie, n.d.)).

This means that for large files it is faster to locate disk blocks for the beginning of files than
it is towards the end. In this way, FFS is biased towards small files, where only the direct
block pointers are used. This is a valid assumption for many UNIX systems as there tends
to be a large amount of small files.

Directories are files containing a list of names and i-node numbers. The special entry ’.’
means the current directory (and should be the currently i-node number) and ’..’ means
the directory above the current directory. The directory structure is a tree. I-nodes may
appear multiple times within the tree as FFS allows for “hard links”; i-nodes can appear
under more than one name.
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Figure 2.4: Direct, Indirect, Doubly Indirect and Triply indirect blocks in file systems such
as FFS and ext2
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For a file (e.g. /home/test/testfile) on an FFS volume to be accessed, the following sequence
of events must take place (assuming the volume is mounted):

• Read root directory i-node

• Read root directory blocks, searching for path entry (’home’)

• Read sub-directory’s i-node

• read sub-directory’s blocks, searching for path entry (’test’)

• read directory’s i-node

• read directory’s blocks, searching for path entry (’testfile’)

• Read file’s i-node

• read file’s blocks.

If all directories in this path occupied one disk block, there will need to be 7 blocks read
from disk before any of the file’s content is read.

However, the advantage FFS has over many of its predecessors is cylinder groups (Figure
2.5). A cylinder group is a collection of one or more cylinders on a disk. Each cylinder group
has its own i-node table, block bitmap and backup super block. The purpose of a cylinder
group is to exploit the benefits of locality. Files and directories used together should be in
the same cylinder group, reducing seek time. The users also has the advantage of being able
to do simultaneous updates to the file system meta data if the implementation supports
fine grained locking as different threads could operate on different cylinder groups.

However, most modern disks hide their physical geometry from the operating system, in-
stead preferring a Logical Block Addressing (LBA) scheme where disk blocks are not ref-
erenced by Cylinder, Head and Sector but by a block number. In these systems, block
N+1 will be the next block to N (possibly read by a different head, but this is transpar-
ent), following the direction that the disk rotates and the transition between cylinders is
transparent.

Due to the array of i-nodes being separate from the file data, seeks are inevitable between
reading an i-node and reading the data. Cylinder groups reduced the distance considerably
but FFS performance suffers from this, as do all systems which keep i-nodes separate from
data. The speed of being able to look up an i-node in O(1) time (i-node array start block
number + i-node number) is at the expense of a seek to i-node data. Caching of i-nodes
by the Operating System helps overcome this seek time for frequently or recently accessed
i-nodes, but initial lookup does not benefit.

Since FFS prefers to store all the files in a directory within the same cylinder group and if
we make the assumption that files within a directory will be accessed at roughly the same
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Figure 2.5: FFS Cylinder Group

time (for example, opening a Maildir style mailbox), a read ahead by the operating system
could greatly reduce disk seeks from the i-node table to file data.

The reliability of FFS is largely based on carefully ordered synchronous meta data writes.
Meta data writes are carefully ordered so that in the event of a crash, the fsck (File
System ChecK) utility can relatively easily recover the file system to a sane state. However,
improvements have been made which allows the file system check operation to happen in
the background. These improvements are known as Soft Updates.

Soft Updates

Soft Updates(McKusick and Ganger, 1999) is a new and rather interesting way to help
improve the reliability and recovery time of BSD’s FFS and remove the need to wait for a
file system check after an unclean mount. The principle behind Soft Updates is to track
meta data dependencies and do carefully ordered writes to disk to ensure that on disk meta
data is consistent. The only operation required after a crash with Soft Updates is a fsck

process that can reclaim any allocated but unused disk blocks. This process can be run in
the background as freeing blocks does not require exclusive access to the file system.

Because of the added complexity of tracking meta data dependencies, it is admitted by the
authors of the Soft Updates code in FreeBSD(The FreeBSD Handbook, 1995-2003) there is
a higher risk of bugs in the code. There is also a higher memory penalty for using soft
updates but the main advantages are the little (or no) change to the on disk format and
unlike a journaling filesystem, meta data is not written to disk twice. There has been much
debate over which approach (soft updates or journaling) provides better performance or is
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a cleaner approach although little data backing up any of the arguments has been produced
and there are not any (easily locatable) convincing benchmarks.

2.2.2 Linux ext2

The ext2 file system(Card et al., n.d.) has been, for many years, the defacto Linux file
system. Recently, most distributions have replaced it with the ext32.2.3 due to its added
reliability. The design of the ext2 file system was heavily influenced by FFS. The data
structures are rather similar in design, the most notable exception being the absence of
fragments.

The main difference with ext2 is the relaxed data and meta-data integrity. All writes to the
ext2 file system only make it to disk when the Operating System chooses to flush dirty blocks
to disk. There is the option to do synchronous meta-data updates, but it is seldom enabled
due to the loss in performance. This relaxed attitude to on-disk consistency accounts for
many of ext2’s speed advantages over other file systems (Giampaolo, 1999). The down side
is the higher risk of file system corruption in the event of a crash and the added complexity
in recovery for fsck utilities. With the work in Tweedie (1998), journaling has been added
to the ext2 file system without a significant performance penalty.

There has also been some work to solve the problem of users accidently deleting files with
the ext2 undelete project(Crane, 1999). The ext2 undelete, like undelete programs for other
file systems, attempt to re-link a directory entry with the (now deallocated) i-node. This
solution is not ideal, as it depends on the file system being in much the same state as when
the file was removed for the i-node not to have been re-used. It also requires exclusive
write access to the file system, something that is unacceptable in a multi-user environment.
Debate on if this is a job that a file system should attempt to solve carries on and is unlikely
to be resolved.

The ext2 file system, like FFS before it, does not cope very well with large directories.
When FFS and ext2 were designed, this wasn’t too much of a problem as disks were not
large enough to hold enough files for this to become a real problem. However, with today’s
large disks and systems such as the Maildir mailbox format (where each email message is a
file in a directory) it is conceivable to have directories with 60,000 files in them2.

There has been work to overcome the inefficiencies in directory lookup in the ext2 filesystem.
The Directory Index(Phillips, 2001) project has managed to devised method of directory
indexing that is both backwards compatible with existing ext2 file systems and forwards
compatible so that older ext2 code can fully access directory indexed volumes.

It is clear from ext2 that extensibility of the file system is very important for its contin-
ued use. There have been several important features added over time without breaking
compatibility backwards compatibility.

2Real-world example of the linux-kernel mailing list messages from January-October 2003



16

2.2.3 Linux ext3

The ext3 filesystem is the same as the ext2 filesystem except for the addition of a transac-
tional meta data journal(Tweedie, 1998). The implementation is fairly standard, employing
the expected optimisations such as batched transactions. The on disk format is compatible
with ext2, the journal simply being another file on the disk (albeit with a special i-node
number). The goal of the ext3 project was to not destabilise the ext2 codebase but to add
one new feature.

2.2.4 Network Appliance’s WAFL

Network Appliance’s (NetApp) WAFL(Hitz, Lau and Malcolm, n.d.) system grew out of the
desire to have a solid and reliable system for networked file servers. WAFL (Write Anywhere
File Layout) uses Snapshots (read only clones of the active file system) to provide access to
historical data (for example, how the file system looked yesterday) and to ensure on disk
consistency.

The requirements for their NFS server were(Hitz et al., n.d.):

• provide a fast NFS service

• support large file systems (tens of GB) that grow dynamically as disks are added

• high performance while supporting RAID

• restart quickly, even after an unclean shutdown due to power failure or system crash

Snapshots are made available to users through the .snapshots directory. Figure 2.6 (the
example from (Hitz et al., n.d.)) shows how a user may recover what was in their file at the
time of any of the snapshots being taken. The main advantage to system administrators is
being able to take a live file system and reliably back up its contents.

The WAFL layout is best thought of as a tree where for each snapshot, the root node is
duplicated and any modified nodes are copied to new locations and referenced to by the
snapshot’s root node. Figure 2.7 (adapted from (Hitz et al., n.d.)) illustrates the layout of
the file system before and after snapshot creation, and modification.

Because WAFL only duplicates modified blocks, it is able to create a snapshot every few
seconds to allow quick recovery after unclean shutdowns. When the new snapshot is created,
the old one is marked as consistent. When the system starts up, it uses the most recent
snapshot that was marked as consistent. Combined with a small (NVRAM based) log, this
provides rapid crash recovery.

Batched disk writes and the ability to write any data to any part of the disk lead WAFL
to perform rather well in NFS benchmarks. Hitz et al. (n.d.) debates the validity of these
bench marks, it is fair to assume that the WAFL approach achieves good performance.
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spike% ls -lut .snapshot/*/todo

-rw-r--r-- 1 hitz 52880 Oct 15 00:00

.snapshot/nightly.0/todo

-rw-r--r-- 1 hitz 52880 Oct 14 19:00

.snapshot/hourly.0/todo

-rw-r--r-- 1 hitz 52829 Oct 14 15:00

.snapshot/hourly.1/todo

...

-rw-r--r-- 1 hitz 55059 Oct 10 00:00

.snapshot/nightly.4/todo

-rw-r--r-- 1 hitz 55059 Oct 9 00:00

.snapshot/nightly.5/todo

Figure 2.6: User Access to Snapshots in WAFL
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Figure 2.7: WAFL Before and After Snapshot

2.2.5 Reiser FS

ReiserFS has grown around Hans Reiser’s desire to integrate the name space in the operating
system. The desire was to create a fast and reliable filesystem for Linux to replace the ext2
file system. ReiserFS is a relatively new filesystem and some of it’s tools (such as the file
system check utility) have not yet reached maturity. However, many users like it due to its
speed and efficiency, especially with small files.

Reiser (2001) claims that through the use of balanced trees, it is possible to get large perfor-
mance improvements in file system throughput and fewer disk seeks during tree traversal.
Reiser (2001) also believes that existing literature focuses too much on the worst case sce-
nario, where none of the tree is cached. Reiser (2001) believes that this is not a useful thing
to study as in the real world, parts of the tree will be cached for most of the time and
performance in this case is more important.
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The Reiser tree is designed to allow efficient handling of directories with thousands or
hundreds of thousands of files, something that was previously inefficient. ReiserFS will also
pack many small files into one block, so 100 byte files do not occupy one disk block each.
BeFS(Giampaolo, 1999) can store a small amount of file data within the i-node, but each
file will still use one full disk block. The reiserfs approach packs multiple i-nodes and data
into a block, thus wasting less space. Nodes on disk which contain these small files are
known as formatted nodes.

The use of formatted notes does mean that when a file outgrows the space it has in a
formatted node, the system must spend extra time copying to elsewhere on disk. Eventually,
as formatted nodes become more fragmented, a repacker will have to be run to help clean
things up. This is the same fragmentation problem that has plagued file systems, the
exception being that the reiserfs repacker should work on mounted file systems and work
transparently.

The other problem with formatted nodes (which is mainly because of the design of the Linux
kernel) is that memory mapping files stored in formatted nodes requires extra work. The
Linux kernel can only memory map on page boundaries, which are usually the same size as
a disk block (on i386, this is 4k). The computational overhead is an accepted tradeoff for
the added disk space savings.

ReiserFS uses a block bitmap and some intelligent searching algorithms for allocating disk
space. Reiser (2001) has empirically shown that their method, which could require extra
reads from disk to traverse the tree gains good allocation and locality. With Reiser4(MacDonald,
Reiser and Zarochentcev, 2002), in memory transactions use a duplicate of the block bitmap
with changes only being committed once transactions enter the COMMIT stage. This al-
lows for greater parallelism in writes to the file system as each transaction does not need
to lock the single copy of the block bitmap.

Reiser (2001) argues that the speed advantages FFS gained through cylinder groups was
more to do with placing semantically adjacent nodes close together on disk. Reiser (2001)
found that this was an excellent approximation of the optimisations of placing data on disk
according to actual cylinder boundaries (which are now often hidden from the programmer).
Reiser differs from FFS in its implementation of locality is separated from the semantic
layer, and it is (theoretically) possible to introduce smarter locality logic to produce a
better locality id for each object id. A possible improvement could be to monitor usage
patterns and lay out objects on disk accordingly. It was found that allocating blocks in
the direction the disk spins (in increasing block numbers) significantly boosted performance
over other policies of just allocating blocks ’near’ each other..

Reiser (2001) debates the merits of whether files should be block aligned, and argues that
the ReiserFS model of not block aligning files gives higher performance for small files. Reiser
(2001) also makes the conjecture that the current usage patterns of file systems are because
of how the file systems have been designed. Current systems are not optimised for small
objects, and at layers above the file system, much aggregation of objects is done. If it were
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more optimal to have many 100 byte files than one 4kb file, then maybe each option in a
configuration file would become a separate object on disk. This is very interesting when
considering that it is impossible to get any usage statistics for Walnut (as so few systems
exist) and user code is limited. Current Walnut implementations limit objects to multiples
of page size, but this is seen as a major limitation.

Reiser (2001) does state that the most interesting features are yet to come, and some of
these are starting to appear in the next revision of ReiserFS, Reiser4.

Reiser FS 4

The main difference between Reiser FS Version 3 and Version 4 is that Version 4 is an atomic
filesystem(Reiser, 2002-2003). Each operation (including writes) happens atomically, giving
the impression of full data journaling. Reiser actually uses a similar system to WAFL(Hitz
et al., n.d.), Wandering Logs.

Wandering logs means that any (free) area on disk can become part of the on disk journal.
This is used so that each file write can be journaled physically close to the file(MacDonald
et al., 2002). This can dramatically reduce the number of disk writes needed to achieve
atomic writes as instead of copying blocks from the log into the file, we can simply rewrite
the block pointers in the file system to point to the blocks in the log. The disadvantage
is that it is possible for files to become more fragmented after an update on a disk where
the free space is highly fragmented. Although, subsequent operations will not suffer this
fragmentation and over time, this could actually decrease the fragmentation of files on disk.

The Reiser (2002-2003) tree, known as a ’dancing tree’, which means it is only balanced in
response to memory pressures triggering a flush to disk or as a result of a transaction closure
(which forces nodes to be flushed to disk)(Reiser, 2002-2003). The speed improvements come
from balancing the tree less often than with every update

This is similar to optimisations other systems (XFS in particular) make just before they
commit to disk. It becomes clear that batching file system operations and optimising their
flush to disk improves both read and write performance. This stems from how the designers
look at the problem, reiserfs and xfs designers view the file system problem as one of many
disk operations, not just a sequence of single disk operations and their design (and increased
performance) indicates this.

2.2.6 BeOS BeFS

In early versions of the Be Operating System, extra information about files was kept in
a database file on top of the filesystem. The separate database design was chosen due
to the engineers desire to keep as much code in user space as possible. With wider use
of the system, especially the POSIX support (which did not interface with the database
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typedef struct block_run

{

int32 allocation_group;

uint16 start;

uint16 len;

} block_run;

Figure 2.8: BeFS Block Run

file) problems were seen with keeping the database in sync with the contents of the file
system.(Giampaolo, 1999)

The Be Filesystem (BeFS) was created out of a need for the BeOS to have a unified filesystem
interface (VFS layer) and a fast, 64bit, journaled and database like filesystem(Giampaolo,
1999). Because of the nature of BeOS and their target audience, the ability to handle media
files was a priority.

The BeFS is also interesting in that two engineers made the first beta release in only nine
months with the final release shipping a month later. This is especially interesting given the
high regard the BeOS file system is held in by many users of it. It’s indexing capabilities
are the envy of users of other systems even over six years after it’s initial release and several
years after the demise of the company.

The journaling implementation in BeFS is rather interesting as it does support the jour-
naling of file data, but due to the limited size of the log file, only directory data is actually
journaled. It would theoretically be possible to add data journaling to BeFS by allowing
the journal to dynamically change size.

The BeFS block run structure (Figure 2.8, from (Giampaolo, 1999) P47-48) is a unique
way to address disk blocks. It takes advantage of the optimal (and common) case of several
sequential blocks being allocated to a single file.

2.2.7 SGI’s XFS

Silicon Graphics started the XFS project to replace their aging EFS file system under their
version of UNIX, IRIX. The Project Description(Doucette, 1993c) listed the goals of XFS as:
scalability (especially for large systems), compatibility among all supported SGI machines
(especially small machines), support the functionality of EFS, to outperform EFS, high
availability, quick recovery from failures and the system must be able to be extended in the
future(Anderson, Doucette, Glover, Hu, Nishimoto, Peck and Sweeney, 1993).

The requirements to satisfy SGI’s customers were rather unique at the time. SGI produced
both high end (compared to the general PC industry) and very high end (1024 processors)
machines and had many customers in the media business who needed to store large files,
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and lots of them. There was also the scientific community who often needed to operate on
large sets of data, including large, sparsely populated arrays. There was also the need to
have good performance on small files (less than 1kb) as most / and /usr file systems have
many such files(Doucette, 1993c).

XFS was designed to be a 64 bit file system and SGI had to deal with the problems
of integrating support for 64 bit file offsets into a system that largely relied on 32 bit
offsets(Sweeney, 1993a). There was the unfortunate consequence that user code had to be
changed to support the larger offsets and extra system calls were added. This has been
the way that 64 bit file offsets have been implemented in several UNIX variants (including
Linux) and the general consensus of the community is that this is the best way.

XFS gains great scalability(Sweeney, Doucette, Hu, Anderson, Nishimoto and Peck, 1996)
through its use of kernel threads(Doucette, 1993a) and message system(Doucette, 1993b)
as well as fine grained locking throughout the code. The purpose behind this is to allow
highly parallel access to the filesystem. Allowing multiple open transactions allows many
processes to be updating the disk at once, a great benefit on large multi processors(Sweeney,
1993c)(Nishimoto, 1994).

For all its speed and parallelism advantages, the size of the XFS code is larger than any
other file system discussed here. At about 120,000 lines of code, it is about fifteen times
the size of ext3 and five times than of reiserfs. On small scale embedded devices, this size
may still matter, but the ever decreasing cost of memory makes this point moot on most
systems. Maintainability of such a large code base could become a problem, although the
XFS project does not seem to have made any of these problems public.

XFS, like other systems, benefited greatly from a good simulation environment during
development(Doucette, 1993d) and this method is echoed in Giampaolo (1999) as a good
method to debug core file system code. This method is taken to the extreme in the User
Mode Linux project, designed to enable testing of the entire kernel within a user process.

The XFS Namespace(Anderson, 1993b) is that of a traditional UNIX system. The main
difference is using B*Trees for large directories. They have shown that optimising for small
and large directories leads to increased performance, mainly due to a decreased number of
disk reads. The in-node directories are a good example of this.

Like FFS, XFS splits the disk into cylinder (allocation) groups(Doucette, 1993e). XFS
does this for increased parallel access to the file system as opposed to FFS’s reason-
ing of increased locality. This works well for XFS as the hardware it was designed to
run on is highly parallel and since the XFS transaction mechanism allows for multiple
simultaneous transactions, this allows multiple simultaneous disk space allocations and
deallocations(Sweeney, 1993c)(Nishimoto, 1994).

The super block of a file system is modified by most transactions and since there is data
in the super block that must remain consistent, we have to journal changes to it. If we
journal the entire super block, this limits us to commiting transactions serially which will
no longer allow the optimisation of the order of transactions being committed to disk. This
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also becomes a rather obvious bottleneck for parallel file system updates. XFS uses a clever
technique to bypass these problems and instead of journaling the super block itself, XFS
will journal the changes to super block fields(Sweeney, 1993b).

XFS also supports named meta-data to be associated with files, known as Extended At-
tributes
(Anderson, 1993a). Each attribute is a name and value pair, with a separate namespace
also available for the administrator if they so wish to populate this separately from the user
visible namespace. Unlike BeFS, XFS does not offer the ability to index these attributes,
and unlike HFS Plus’s ability to have arbitrarily sized meta-data streams, XFS limits the
size of the meta-data. This severely limits what can be stored as meta-data on an XFS
volume, but at the time XFS was being designed not many other systems supported any
form of extended attributes.

2.2.8 MacOS and MacOS X’s HFS and HFS Plus

The Macintosh’s HFS and the updated HFS Plus(Inc., n.d.) volume formats are rather
different from the UNIX based filesystems discussed here. It is clear from its data structures
that it was designed to support a graphical environment, something which the MacOS was
designed to be.

This is evident with the unique forks concept. Each file on a HFS (or HFS Plus) volume has
two forks: a data fork and a resource fork. The format and access methods of the Resource
Fork are specific to the MacOS and is documented in (Inside Macintosh: More Macintosh
Toolbox, 1993). Each fork is a stream of bytes and either fork can be of zero length. This
is effectively the inverse of UNIX hard links. Hard links are many names for one stream of
bytes, while forks are one name for many streams of bytes.

HFS Plus has an attribute file which is intended to support an arbitrary number of named
forks sometime in the future. The goal behind this was to be able to attach extra data
and meta-data to files and directories that is moved and removed with that object - an
advantage over the more traditional method of adding hidden files to a directory. The
MacOS currently only uses two such streams for its traditional Data Fork and Resource
Fork.

A common way for MacOS based word processors to store documents was to have plain text
in the data fork (so that the raw information could be easily read by other applications,
even on other computing platforms) and all the formatting information in a resource in
the Resource Fork. The MacOS provided the Resource Manager(Inside Macintosh: More
Macintosh Toolbox, 1993) set of APIs to manipulate a simple two-level namespace within
the resource fork. It was also common for User Interface specific information to be stored
within the resource fork. One such application was to store the name of the program used
to create a document so that somebody trying to open it who did not possess the necessary
software could be notified of what software they needed to open the document.
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In contrast, the Be Operating System (BeOS) used indexed attributes to store and access
meta-data for meta-data such as MIME types of files, Artist and Album titles of music
files and the status of email messages. The query interface meant that users could perform
complex searches of the contents of attributes. The BeOS engineers found that keeping the
attributes associated with the file, on the file system as opposed to in a separate “attributes
file” was of immense benefit in the general efficiency of the storage system(Giampaolo, 1999).

2.2.9 BSD LFS

The BSD Log Structured File System(Seltzer, Bostic, McKusick and Staelin, 1993) is rather
different from the traditional file system. The disk is treated as a log file, with each write
being to new disk blocks, never overwriting previously used ones. This approach is believed
to increase file system write performance and this is cited as the main reason to use a log
based file system.

Although LFS does sequential writes, a set of FFS style index structures are maintained to
support efficient random retrieval. The i-node map maps i-node numbers to disk addresses.
An LFS disk is divided into fixed sized segments, typically of 512kb. When dirty (modified)
blocks are to be written to disk, LFS will write a segment, or a partial segment (for when
there are not enough dirty buffers to fill a segment) to disk. Each segment contains a
summary block which contains the i-node and logical block number of each block in the
segment. The ifile structure (Figure 2.9) is a read-only file on disk which contains the
segment usage table and is used by the cleaner.

CLEANER INFO

SEGUSE 1

......

SEGUSE N

IFILE 1
......

IFILE N

SEGMENT
USAGE
TABLE

INODE MAP

VERSION NUMBER

FREE LIST POINTER

DISK ADDRESS

FLAGS
LAST MOD TIME
NUM LIVE BYTES

NUM DIRTY SEGMENTS
NUM CLEAN SEGMENTS

Figure 2.9: BSD LFS IFILE
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There is a garbage collection process (the cleaner) which will reclaim disk blocks that
belong to deleted files or have been superseded by more recent writes. This does lead to
a performance hit when the disk is near full as the cleaner must run often. The kernel
maintains a segment usage table which tracks the last modified time and the number of
“live” bytes in each segment; the cleaner uses this table to find segments to clean.

Because of the log structure and the no-overwrite policy, it is possible to implement a
facility to request previous revisions of a file. Although the BSD-LFS does not implement
this, Seltzer et al. (1993) does indicate that this, among other features could be easily added
to LFS.

For an “unrm” (un-remove) utility, the primary problem to be solved would be locating the
old inode on disk. It is theorised that this would be a rather trivial problem to solve(Seltzer
et al., 1993).

The Seltzer et al. (1993) paper shows favourable performance benchmarks, not showing
any significant performance penalty over the use of FFS. Indeed, in some areas, such as
simultaneous random updates, LFS has a large performance advantage over other systems.
Real world use of LFS has been rather small, possibly due to peoples general reluctance to
switch to something radically different than that which they are used to.

2.3 Revision Tracking

There have been various attempts to integrate revision tracking into the file system. The
VMS operating system saved each revision of a file into a separate file with a version number
appended to the name (’file;1’,’file;2’ etc). This can (partially) help the user reverse errors
such as accidental deletion of files (or part of the content of a file) or wanting to change
something back to the way it was. LFS shows that it could be possible to add revision
tracking to an existing system without a large performance penalty, but no implementation
exists to do this and the LFS user base is rather small despite having existed for nearly 10
years.

The best revision tracking most systems currently hope for is an undelete utility. Traditional
undelete utilities for existing file systems are not guaranteed to work reliably or on active
file systems(Crane, 1999). Some file systems lend themselves to effective undelete utilities,
and others do not. They may have a preference to reuse recently deallocated disk blocks
and i-nodes (such as XFS does) or dynamically allocate i-nodes anywhere on disk, making
a search for the i-nodes of delete files a very expensive operation.

Many users have resorted to using version control systems such as RCS and CVS(Tichy,
1985) to store and track changes to their documents. Typically, these have required more
of an expert knowledge than many end users have, and have not been used widely outside
the developer community (who are used to such tools for Source Code Management). More
mainstream applications such as Microsoft Word and AbiWord have started to integrate
simple graphical interfaces to store and retrieve document revisions, but they have yet to
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gain common usage. The possibility of integrating such a feature into the file system is
desirable as it would mean that revision tracking would be transparent to applications and
instantly available to all the tools users are familiar with.

In both Tichy (1985) and MacDonald (n.d.), it is shown that the delta of two file revisions
can be computed in reasonable time and stored efficiently. Systems such as WAFL(Hitz
et al., n.d.) and LFS(Seltzer et al., 1993) have provided limited support for snapshots of
the entire file system and in the case of WAFL, allowing users to access previous revisions
of files. The WAFL approach uses significantly less disk than the VMS approach of revision
tracking as WAFL only duplicates blocks that differ (and applicable meta-data blocks)
between revisions.

The XDFS(MacDonald, n.d.) approach is rather different to that of WAFL, XDFS stores
all deltas between a file’s revisions. At any time, any revision of any file on an XDFS volume
can be accessed, not just snapshots of the entire system.

2.4 Conclusions

Existing file systems have several things in common:

• the name resolution system is separate from how files are stored on disk

• Files are represented on disk by a structure generally referred to as an i-node con-
taining a small amount of set meta-data and pointers to disk blocks containing file
data

• Extensible systems have had features added when needed and remained popular.

There are also several trends in file system design:

• There is a trend to support arbitrary amounts of meta-data

• Speed for large files and large numbers of files is increasingly important

• Quick crash recovery is now a requirement

• A trend towards data journaling to ensure the contents of files are not corrupted after
a crash.
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Chapter 3

Constraints on a Walnut Object
Store

In this chapter we define the constraints placed on the design of a new object store for
Walnut. We examine the restraints placed on us by the physical properties of disks, the
requirements stemming from the design of the Walnut kernel as well as the possibility of
supporting extra features that would be of benefit to Walnut. Following chapters examine
the design and implementation of a system to meet these constraints.

3.1 Constraints from attributes of physical disks

The physical attributes of any kind of modern disk place constraints on the design of any
on disk structures. Although the physical design of the disk (Cylinders, Heads, Sectors) is
now usually hidden from the programmer, the basic physics still apply:

• Disk seeking is expensive and should be avoided

• The seek time from block a to b is proportional to |b − a|

• Accessing N blocks at once is quicker than accessing N blocks one at a time.

• It is quicker to access blocks in the direction the disk spins (i.e. with the head at
block N, block number N+1 is quicker to access than N-1)

• Areas of a disk degrade over time and some blocks become ’bad’, that is they can no
longer be reliably used to store data.

The ideal access pattern for disks is where all required data is sequentially on disk and the
software accessing it can process it the same speed that the disk can read it. The same is
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true of disk writes. Unfortunately, this can never be the case, so some compromises have
to be made. The closer an object store can get to this ideal, the better its performance.

These constraints have remained true through the entire history of magnetic disks. The same
limitations also apply to optical media such as CD-ROMs and will also to emerging storage
technologies such as holographic storage. The situation is different with flash media as there
are not the physical delays of head movement and platter rotation and any optimisations
made to avoid these will be void.

Flash devices also have the added restriction of a limited number of writes before failure
and a larger block size (128KiB for NOR flash and 8KiB for NAND(Woodhouse, 2001)).
Systems such as the Journalling Flash File System(Woodhouse, 2001) have been specifically
designed for these devices and their (typically) embedded environments, so it is viewed that
a storage system for these devices should be designed around their specific needs as they
are different enough from disks to warrant such treatment.

Devices such as PCMCIA flash cards do not need a special system designed for them as the
standards specify methods to emulate the behaviour of more traditional block devices and
to cycle the use of blocks so that no one set of blocks gets worn out before any other.

3.2 Walnut Requirements

The system the object store is primarily designed for is the Walnut Kernel(Castro, 1996).
The design of Walnut places several design constraints on the system.

• Objects must be easily memory mapped

• Object lookup must be fast

• The storage system must be robust

• The storage system must ensure both data and meta-data consistency.

• The storage system must support a persistent system

• The storage system must not leak information (one of Walnut’s goals is security)

• The storage system must be suitable for implementation in a micro-kernel environ-
ment.

• The storage system must support caching of objects from other devices (Walnut is
meant to be distributed)

• The storage system must be able to support Walnut’s password-capability architec-
ture.
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3.3 Walnut niceties

3.3.1 Networked Volumes and Caching

Since Walnut is designed to be distributed, it makes sense that volumes will be mounted
over a network. Traditional caching of remote objects has been limited to RAM as a local
backing store.

In modern networked environments, most client machines have a local disk that is largely
unused (usually storing just an operating system and applications software) and user docu-
ments are stored on a networked volume. Other techniques have been developed to manage
many machines of the same configuration such as disk imaging and automated software
updates from a central server. What a lot of setups really want is all workstations to have a
copy of the networked disk, but use the local disk as a large cache. Using protocols such as
rsync(Tridgell, 1999) it would be possible to update objects in the local cache on demand
and efficiently in both speed and bandwidth.

3.3.2 Backup

The problem of backup and restoration in a secure environment has been long standing
and many believe it has not been solved satisfactorily. This is untrue for the backup and
restoration of an entire volume, which can be accomplished with the creation of UNIX like
dump and restore utilities. Care must be taken to not expose sensitive user information to
the party running the dump or restore utilities. Features such as limiting how many times
the capability for the disk may be loaded simultaneously and various locking mechanisms
could aid in keeping the security of the system.

If we make the assumption that the primary interaction between users and objects is going to
be via a name-server, the restoration of individual objects can be approached by inserting a
new object (with the contents from backup) with the same key into the name-server’s index.
This is much the way that existing per-file backup strategies work on other platforms.

In the design of the new storage system for Walnut, we should provide mechanisms for the
efficient backup and restoration of entire volumes but not dictate a policy on how this is to
be done.

3.4 Inter-Object Dependencies

When resuming a process object, all objects mapped by it must be consistent with what
the process last saw. Persistence is meant to be transparent to user processes which means
that they should not need to do any sanity checking after an unclean shutdown. If the
objects on-disk that were being used by a process are not from exactly the same time as
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the process, it will be as if memory has been altered underneath the process, creating very
unpredictable results.

3.5 Generally good requirements

Maintaining file-system (or indeed, object store) meta-data consistency after an unclean
shutdown is now considered a requirement of any system as lengthy consistency checks can
be both problematic and immensely time consuming. Most existing systems solve this by
using some form of transactional meta-data journal, and since this is not a new area, the
implementation details of journaling are not covered and left as an exercise for a future
revision.

In the case of disaster, where parts of the volume have been damaged, possibly in very
unpredictable and catastrophic ways, it is important to provide every mechanism possible
for tools (or people) performing volume recovery. A common method of reconstructing
a volume involves scanning the volume for data that could belong to a file system data
structure. The use of magic numbers can be of great use, especially if they are unusual
values and at unusual offsets within blocks.

3.5.1 Magic Numbers

Magic numbers are often used in data structures to aid in debugging. When dealing with
on-disk structures, they can also greatly help in disaster recovery. By searching a disk
for blocks containing magic numbers in specific locations it can aid us in reconstructing a
partially destroyed volume.

By separating magic numbers withing data structures (e.g. Figure 3.1) it allows better
detection of corruption within a specific area of a data structure. For example (from Figure
3.1), if a buffer overflow was to write 11 words into value4[], hence overwriting MAGIC2,
we would still be able to see the MAGIC1 number and examine the possibility of this being
a data structure.

It is for these reasons that we have carefully designed some data structures and the place-
ment of magic numbers within them to help aid volume recovery tools.

3.6 Revision Tracking

Tracking revisions to objects could be of great benefit to users of the system. It is widely
acknowledged that users make mistakes and that program error can be time consuming to
correct. The speed of such a feature is dependent on the efficiency of computing and storing
deltas, the differences between revisions.
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Revision tracking also raises important questions about access permissions and time. Ob-
jects (and with Walnut, capabilities) change over time. Questions about capabilities and
their validity period must be answered to maintain the security of the system.

3.6.1 Flexibility and Extensibility

The most successful file systems have been those which have been shown to be extensible
either through defined parts of the design or incompatible updates to the disk format.

The Linux ext2(Card et al., n.d.) file system has had many extensions implemented, one
of which is journaling(Tweedie, 1998) (ext3 is ext2+journaling). More ambitious additions
such as directory indexing(Phillips, 2001) aim to remove initial limitations of the ext2
file system. Apple’s HFS Plus volume format also leaves part of the specification to be
determined for “future use”.

The design for any new storage system should be easily extensible both in on disk format
and design. The power and flexibility of the system should exist in the data structures, not
in the algorithms required to manipulate them. This will enable shorter and simpler code,
which is in turn easier to debug and leave room for future expansion.
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1 struct a da t a s t ru c tu r e {
2 u64 MAGIC1 ;
3 u32 va lue ;
4 u32 value2 ;
5 u32 value3 ;
6 u32 value4 [ 1 0 ] ;
7 u64 MAGIC2 ;
8 } ;

Figure 3.1: Separated Magic Numbers
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Chapter 4

Design of a Walnut Object Store

In this chapter we explore the overall design of a new Walnut object store and the reasoning
behind design decisions. Figure 4.1 is an outline of some of the problems and possible
solutions to them which are explored in this chapter. The more implementation specific
details are left for the next chapter which covers more specific data structures. At various
points the new object store may be referred to by its code name, FCFS .

The object store is implemented on top of a flat, logical block addressing model of a disk
where any re-mapping of blocks that may be done by volume managers or disk firmware is
ignored and the constraints from Section ?? are assumed to hold true.

4.1 Volume Identification - the Super Block

The super block details some global information about the object store and where certain
critical data structures can be found on disk. Designed to be easily identifiable (especially
by relatively simple boot-loaders) as both a FCFS volume and the specific revision of the
FCFS system which last wrote to the volume, and if the code is compatible with it (and if
it is read-only or read/write compatible).

A copy of the super block is placed at volume creation time at the start of each allocation
group. Since it would be too costly in seeks and writes to expect to keep all of these copies
consistent all of the time, we will only ever guarantee that the primary super block (the
one at the start of the disk) is consistent. Such consistency would be achieved through
journaling which is not discussed in this thesis.
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4.2 Block Addressing

There are a number of ways of addressing blocks in use today. The way we (usually) have to
reference them to the block device layer of the Operating System is by a logical block number
from the start of the block device. Most systems also have the ability to specify an amount
of read-ahead that will proceed asynchronously after reading the block we requested.

Traditional UNIX file systems track what parts of the disk are being used by a file in its
i-node structure. There is an attempt to optimise for the (traditionally) prevalent small file
on UNIX systems. Thus, on very large files it is quicker to access the first few blocks of a
file than it is to access the last one. Traditional UNIX systems (e.g. FFS, ext2, ext3) the
i-node has space for several block numbers (direct blocks), several indirect blocks (that is,
a pointer to a structure that lists block numbers), less doubly indirect blocks (a pointer to
a structure of pointers to structures with block numbers) and sometimes even an entry for
triply indirect blocks (see Figure 2.4).

This system has several disadvantages when dealing with larger files. Although a block at
the start of a file will not require a seek to find, a block at the end of a file may require up
to four extra seeks to find. Also, this method provides little advantage in the optimal case
of all blocks in a file being sequential on disk.

4.2.1 Block Runs/Extents

Since the optimal way to interact with disks is with large sequences of blocks, it makes sense
to try and optimise a data store for this case. Most block allocation algorithms will attempt
to allocate the blocks in a file to sequential blocks on disk. It makes sense to optimise the
recording of which blocks used by a file for this optimal case.

BeFS(Giampaolo, 1999) uses a structure called a Block Run (Figure 2.8) instead of block
numbers to reference locations on disk. This has the distinct advantage of optimising for the
best-case scenario where each file is a contiguous run of blocks on disk (a single structure
can address up to 64MB with a 1kb block size). The allocation group member refers to
the number of the BeFS allocation group.

We use a variation of the BeFS block run structure, removing several of its limitations. The
original structure (Figure 2.8) was limited to 248 blocks on a volume (with 1K block size,
a maximum volume size of 258 bytes). The FCFS block run (Figure 5.5) has an addressing
limit of 1.84 × 1019 blocks. Considering that even with the (relatively small) block size of
1K, this would address over 16.7 million Terra-bytes of data, it is commonly accepted that
this will not be a problem anywhere in the near future.

The Block Run (often referred to as extent by some systems) is used to address a series of
blocks on disk. The term block run is used over extent purely due to personal preference.
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4.2.2 Allocation (Cylinder) Groups

We split the volume into several allocation groups (similar to XFS and BeFS) so that is
possible to have several threads updating different parts of the disk without contending for
the same lock. We assume that the disk, the disk controller or the driver software performs
the optimisations related to cylinders (so that the logical blocks 1,2 and 3 are on cylinders
1,2 and 3 respectively).

Although there is no specific data structure for the allocation group, several other structures
are used. The first block is a backup copy of the super block (See section 4.1) as it was at
allocation group creation time. For most systems, this will be the volume creation time but
in future releases it is intended that allocation groups could be added on the fly to expand
the size of the volume. There is then the block bitmap (see Section ??).

Super
Block
Backup

Block
Bitmap

(used for onode_index, onodes and data)

Data Blocks

0 1 1+(n/8)/blocksize n−1

Figure 4.2: FCFS Allocation Group on disk layout

4.2.3 Block Size

Some studies have shown that for multimedia applications, a larger block size can improve
throughput for these throughput sensitive applications. This is especially true when trying
to read several media streams from disk. An example block size of 256kb has been shown
to improve performance for streaming media. Since media files are usually quite large, the
internal block fragmentation of an average 128kb per file is insignificant. However, for small
files, this wastage can become problematic.

We believe that the same performance gains can be achieved through better disk read-
ahead, batching of commands to disk and better disk scheduling algorithms. It would be
better to improve these areas as the benefits will be available to all applications accessing
the disk. The use of a block run structure can be thought of as a better solution to this
problem, as it allows prefetching to easily be done on a much larger amount of data.

There is the option of having different allocation groups have different block sizes, but the
added implementation complexity and the removal of some of the parallelism advantages of
allocation groups, such a feature is not deemed worthy to pursue.

Systems such as XFS and BeFS allow data for small files to reside inside the i-node disk
block. Since the i-node data structure is often much smaller than the disk block size, many
files consuming less than one block of space can fit in the same block as the i-node. Often,
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the space used for referencing what disk blocks are being used by a file are also used to
store in i-node file data. This is a relatively trivial feature to implement, and we shall use
it in our system to varying degrees and plan to expand its use in future revisions.

ReiserFS(Reiser, 2001) goes for something slightly different allowing several files to share
a single block. For our improved Walnut object store, it is debatable if the extra effort
involved in implementing this is worth the limited benefit it may provide us. For initial
revisions of the object store, the ability to have in o-node data is perceived to be adequate
but further exploration of the ReiserFS approach should be done if in o-node data alone
proves inadequate. It should be noted that initial benchmarks of Reiser4(Reiser, 2002-2003)
show a negligible penalty for storing several objects in the one disk block, an improvement
over Reiser3.

The new Walnut storage system will allow the creation of volumes with large block sizes,
which allows for the rare circumstance where there may be a measurable performance
improvement in doing so. The time needed and complexity in implementation of mapping
multiple objects into one disk block is viewed too great for this initial system, although if
usage patterns show that many tiny objects are being used we may have to reconsider this
decision.

4.3 Free Block Tracking

Two common scenarios exist for allocating a number of disk blocks. A request for a large
sequence of blocks indicates that the preference is for a contiguous chunk of disk space
(this will often be the case when creating or appending to media files) while modifications
to files such as documents will usually require only a few blocks, but close to the rest of
the file to avoid large amounts of seeking. Any free space tracking and allocation system
should perform well in these two scenarios. Unfortunately, many systems have chosen ease
of implementation over efficiency during runtime and we are currently no different.

4.3.1 Block Bitmap

The standard method of tracking used blocks has been to use a block bitmap. Each bit in
the bitmap represents one block on disk; when set, the block is in use and when not set, it
is free. The main reason that the block bitmap has been so popular is because of its ease
of implementation. This is the reason that it has been used here and the design choice is
regrettable and should be corrected in a later revision of the system.

The main disadvantage to the block bitmap method is the efficiency of allocating blocks.
Finding a free block which is near another block (n) is relatively simple, a simple search
through the bitmap until a free block is found works quite well where there are free blocks
nearby. In the worst case scenario, where the only free block is n − 1 this algorithm
will scan through every block on the disk, a rather expensive operation. It may be worth
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implementing extra logic to scan for free blocks behind n once a certain threshold of scanning
forwards is reached, but real world tests would be needed to see if this gives any better
performance.

The other scenario, looking for a sequence of n free disk blocks is not well supported by a
block bitmap. The same linear search must be employed as for the first scenario. However,
the ease of implementation is the main advantage, and this is why it was chosen over the
more efficient method of keeping two B+Trees.

4.3.2 Block B+Tree

SGI’s XFS system keeps two B+Trees which index free space on disk. One of them is keyed
by block number, the other by the length of the extent. This means that any lookup for free
space will occur in O(nlogn) time and always find the best location on disk. Unfortunately,
the added complexity in implementation means that such a mechanism is not commonplace.

4.3.3 Our Implementation

For ease of initial implementation, a simple block bitmap has been implemented. It will be
replaced by dual B-Tree structures in a later revision of the system as it is viewed to be a
more optimal approach. There is a separate bitmap for each allocation group, starting in
the second block (Block 1) and using a minimum of one disk block.

The bitmap size is dictated by 1 bit per block in the allocation group. In the event of the
last allocation group being smaller than the rest, the bitmap should be large enough to
expand this allocation group to the same size as the others. This is to allow the (future)
feature of dynamically expanding the size of a volume.

4.4 Storing Objects

To store objects on disk we need a data structure to record where the content of the object
can be found on disk and any meta-data that the operating system requires about that
object.

4.5 Object Node (o-node)

The o-node is the name we give to the data structure describing an object on disk. It is
similar to the UNIX file system concept of an i-node but contains a lot less meta-data as
most of the meta-data is specific to UNIX. The o-node has been designed to be flexible and
extensible so that when new features or requirements need to be added, it is easy to integrate
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them. The O-Node contains several other data structures and concepts, a complete view of
the o-node and related data structures can be found in Figure 4.6.

The initial design of the o-node structure has been simplified in certain areas for ease of
implementation and debugging. As there is room for future improvements - mainly related
to the efficiency of packing data into blocks or the o-node block - the current structure
has been labelled fcfs onode1 with the intention that when a more efficient o-node is
implemented, backwards compatibility can be maintained.

The key:value pair in the object index is the o-node Id and the block number of the o-node
data structure. Each o-node contains a B+Tree of the forks in the object. It is thought
that most objects will not have many forks and that it is unlikely for an o-node to contain
anything but a leaf of the forks tree. We optimise for this case by including the fork
information inside the o-node block so that extra seeks and reads are minimised.

Each fork contains a B+Tree of block runs (again, highly unlikely to ever be anything but a
leaf as the majority of objects on disks are contiguous). It is also possible for the fork data
structure to hold some data instead of the B+Tree to optimise for forks holding only small
amounts of data. In the initial implementation, this data is limited in size but it would
make sense to explore the possibility of allowing variable amounts of data inside the o-node
block.

4.5.1 In o-node data

Although technically this should be titled “in o-node fork data”, this title is more in tune
with how other systems describe what we do. If the content of a fork is small enough to fit
within the o-node’s disk block, we will pack it in there so that we do not waste an extra
block of disk space and require a seek (Figure 4.3). The current implementation limits how
much data this is, but a future revision should allow up to the remainder of the o-node
block to function as this “small data” area.

This is to allow more efficient access to small forks, which are likely to be meta-data such
as the Walnut object header. On other systems, such data is stored directly in the i-node
and by allowing small forks to be stored inside the o-node block, we achieve the same level
of performance as these systems.

The ReiserFS approach of tail-packing(Reiser, 2001) is probably a more efficient and flex-
ible design, but is considered too complex for the time constraints of this project. Such
approaches should be investigated for future revisions of the object store.

4.5.2 Object Forks and Meta-Data design

The fork terminology (as used by HFS+(Inc., n.d.)) means that an object (in HFS+
terminology, a file) can have more than one stream of data. The advantage of having
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Figure 4.3: Reference to data block vs. data inside the o-node block

multiple data streams associated with one object is that extra meta-data can easily be
added without affecting the volume format or content of the object’s main data stream.

There have also been attempts to speed up the “search by content” feature of some operating
systems. Such a feature typically extracts and indexes human decipherable data from
files/objects and searches this index instead of crawling through every file on disk (a very
time consuming operation). The most common method is to periodically index files on disk
and store these indexes in separate files. This method has two main disadvantages: upon
each run the system must scan every object on disk to check if it has changed or been
removed and the database is always out of date. If the index (or some information relating
to) was stored along with the object on disk and the appropriate programming hooks were
available, it would be possible to create a list of updated objects for the “search by content”
software to look at in addition to its existing indexes.

Having multiple data streams for an object can also greatly simplify the implementation
of extra features such as revision tracking (Section 4.6). The Reiser (2002-2003) system is
using plugins to provide similar functionality and the HFS Plus volume specification does
allow for named forks other than the traditional MacOS Resource and Data forks although
these are not currently used by much software.

It is because of these points that we have decided to allow objects to have an arbitrary
number of data streams (forks) associated with them. It is important not to confuse our
usage of the word fork with the MacOS concept of a Resource Fork, we use fork to mean
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an arbitrary length string of bytes. In a system such as Walnut, one fork could contain the
content of the object and another the Walnut specific header information. If our storage
system were to be geared towards a UNIX like environment, one fork could contain the
meta-data (usually contained in the i-node) and another fork could hold the content of
the file. A MacOS implementation could use one fork as the MacOS Resource Fork and
the other as the Data Fork. It is clear that this design choice allows lots of flexibility and
potential compatibility with other systems.

With various systems supporting various types and amounts of meta-data, the line between
data and meta-data can become very blurred. We argue that the difference can purely be a
matter of perspective. To a Word Processor application, the text and formatting information
is the data it cares about while the icon and file name are auxiliary information, meta-data.
However, for the same word processor file, but to a file manager style application, the icon
and file name is the data it cares about and the text and formatting information can be
viewed as auxiliary information (perhaps used in generating a preview or summary of the
document).

We take the view that “one persons’ data is anothers’ meta-data” and believe that the
object store should be designed to efficiently support this principal. Our initial design was
to support the one o-node to many meta-data streams (forks) with one of these being the
“data” fork (Figure 4.4). To help improve this design, allowing for inter-object meta-data
relationships to be realised, the idea of allowing a meta-data fork to be a link (capability)
to another is thought to aid in realising this (Figure 4.5).

A real world example could be an application object having a link to its manual page, doc-
umentation and to the object which describes the complete installation of the application.
The behaviour of these links would be much how symbolic links are handled in a UNIX like
environment. Although not currently implemented, the capability structure could easily fit
within the o-node block, making implementation trivial as well as rather efficient.

4.5.3 Access control to meta-data

If the Walnut model were to be expanded to allow objects to have an arbitrary number of
meta-data forks, there would have to be a method of referencing these forks and a good
method of access control.

One simple method is to expand the password-capability structure to accommodate a
fork type field (which would match with that in the fcfs fork structure). The mas-
ter capability would provide access to all forks, and restrictions on which forks could be
accessed could be added to the capability mechanism.

Another method could involve a separate master capability for each meta-data fork. Each
of these methods as advantages and disadvantages and further work is needed to come up
with a good system.
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Figure 4.4: Meta-Data Design 1

4.6 Revision Tracking

We make the assumption that the most recent version of an object is going to be the most
commonly accessed version and make optimisations for this case. Other revision control
systems such as RCS(Tichy, 1985) also make this assumption, and this is consistent with
the use of systems that do not track revisions as on these systems the most recent version
is the only version available.

To be able to access older revisions we either need to store the old revision in full or store a
set of operations to be used to reconstruct it. The difference between two revisions is called
a delta. If a delta, when applied to a new revision, constructs an old revision, it is termed
a reverse delta as it reverses the effects of time. A delta which makes transforms an old
revision into a more recent one is known as a forward delta. If we make the assumption
that the most recent version will be the version most frequently accessed, then it makes
sense to store this version on-disk so that the revision tracking adds no overhead. We can
then store a series of reverse deltas on this version to make it possible to reconstruct any
previous revision.

To maintain consistency, the writing of deltas and changes to objects should occur in a
specific order:
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Figure 4.5: Meta-Data Design 2

• Firstly, the information about the reverse delta should be written to disk. (e.g. append
data, replace data)

• Secondly, the data part of the delta (what data to append or replace) should be
written to disk

• Finally, the “current” revision on disk should be updated to reflect the (new) current
revision.

If any of these steps does not complete successfully it is possible to reverse previous steps
so that the object is in its previous (consistent) state. This gives us the effect of data
journaling - a guarantee that the content of an object is consistent after a crash. This is
essential in a Walnut system where processes are persistent and any damage to a process
object could yield undesirable, even catastrophic results.

The concept of a “stable” or consistent revision has been introduced to allow the par-
tial writing of deltas in case of memory pressures. It also allows the delta between two
revisions to contain more than one operation using simple data structures. Only when all
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the operations involved with a change in version have been written to disk shall a revision
be marked as consistent. In low memory situations, it is possible to write operations out
to disk without compromising the consistency of an object. Figure 4.7 shows how previous
revisions are reconstructed by applying reverse deltas and how deltas may be applied upon
recovery to revert the object to a consistent state.

Instead of adding complexity to the o-node structure to support revision tracking, it was
decided to track the revisions to each fork separately using two other forks to store the
revision information. This allows the flexibility of having forks which aren’t under revision
control should the need arise as well as an implementation of revision tracking using existing,
predesigned and simple infrastructure. One fork is a list of a simple data structure detailing
the operation being performed (See Section 5.7.1), while the other is data which may be
required to complete the operation (e.g. an INSERT operation with the data to insert).
This is illustrated in Figure 4.8 for the tracking of one fork in an o-node.

To allow the retrieval of multiple forks from a specific time to get a view of an entire o-node
as it was in the past, the time field from the onode fork rev structure (Listing 5.13) can
be used to synchronise revision numbers of the different forks. This method may prove
unworkable due to the reliance on a working system clock and methods involving either
adding a separate field to the onode fork rev structure or making the revision number
global across the o-node, possibly with a relationship to the o-node revision field may need
to be explored.

The choice to not support concepts such as branching in the revision tracking system is a
conscious one as the added complexity for implementation and especially for users having
to reference branches is considered too high for this initial design. There is no reason why
extensions could be made to support branching, perhaps in the form of a clone operation
which preserves a link to the revision of the cloned object as part of the new object’s revision
history.

4.6.1 Temporal Windowing

Tracking revisions to objects is of little use if a mechanism of accessing previous revisions
is not provided. In providing such a mechanism, careful attention must be made to ensure
the security of the system. In the life of an object, its contents, size and access controls can
be changed. Questions must be raised as to the validity of capabilities over time, and these
are questions which are not easily answered. Several possible approaches include:

Current capabilities are valid for all revisions Advantages are that it is a simple ap-
proach to implement it has several large disadvantages. The simple process of “remove
the confidential information and make it publicly accessible” becomes problematic and
error prone.
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Figure 4.7: Revision Tracking

Previous revisions only accessible to the holder of the master capability This would
mean that you must have all access rights to the object before you can retrieve a pre-
vious revision. This may prove limiting if you wish to grant others similar rights with
different capabilities.

Revision information is accessible only by a separate master capability Provides
a large amount of flexibility, but removes the elegance of a single master capability.

An as yet undetermined way to extend capabilities into the fourth dimension This
is probably going to yield the best results, but requires much further research.

The correct way to control access to objects over time is unclear. The few simple methods
suggested here hold some merit in certain scenarios but do not stand out as a universal solu-
tion. Further research into methods to control access to objects over time is needed, possibly
with the aim of extending the password capability model to cover temporal windowing.
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Figure 4.8: Revision Tracking - On Disk

4.7 Object Indexing

The function of the object catalogue is to translate object ids into disk blocks. There are
several approaches to this with various advantages and disadvantages to each.

4.7.1 Hashing Object IDs

The approach which the current Walnut implementation takes is that a hash function is
applied to the object id which gives us the block number of the object header. This means
that object lookup is an O(1) operation, which is a good thing but the disadvantages of
this mechanism outweigh this single constant time operation.

The resize operation on a volume using this scheme is extremely expensive as (most likely)
all object headers would need to be moved. Worst case scenario, data blocks would also
have to be moved so that the headers could be put in the correct locations.

Another major disadvantage is that it limits what object ids can be stored on a disk. Since
in Walnut part of the security of the system is based on the object id, this method reduces
the overall security of the system. One possible work around would be to have a separate
Walnut object id to on-disk object id index, but this would mean that we loose the advantage
of the O(1) lookup operation that a hash provides.
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4.7.2 Sparse File approach

Sparse objects are objects where blocks are not allocated for unwritten blocks. If there was
an object where the first 10,000 blocks where never written to and it was sparse, these blocks
would not be allocated on disk but simply marked as empty in the block run structure (see
Section 5.3.1 for details). Sparse objects are extremely useful for efficiently storing sparsely
populated arrays, which is exactly what a catalogue of object ids is.

With this kind of setup (maybe in addition to hashing the object ids before placement
into the sparse object) the limiting factor becomes how efficiently the system can compute
offsets in a sparse object. Space efficiency could also be an issue as the most obvious way to
implement sparse objects is on a block-by-block basis. This means that a write of a single
value (the block number of the object header) will mean the allocation of a complete disk
block, potentially wasting lots of disk space if the keys chosen are evenly spaced inside the
address space (See Figure 4.9). It is because of this potential wastage of space that we chose
not to use this method.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Used portion of block

Figure 4.9: Sparse object index wasted space

4.7.3 B+Tree approach

The use of B-Trees as indexes on file systems has been commonplace for many years and
is one of the most common methods of storing indices. This is because of the relatively
cheap insert and lookup operations as well as the data structures being easily adaptable
and efficient for large page based storage (such as disks). It is because of the good lookup
performance that we have chosen to use a (slight variant) on the standard B+Tree for the
object index.

B+Trees are chosen over other forms of B-Trees as the property of B+Trees having all data
in the leaves leads to higher disk cache hits during lookup. This is because during key
lookup we are more likely to want the branching information from the internal nodes than
the value (many branches are needed, but only one value). Thus it is better to already have
as many branch information (which is what all the data inside a B+Trees internal node is)
in memory than lots of values (from the key-value pair).

Although algorithms exist for deletion from B+Trees(Jannink, 1995), they can be either
expensive (computationally or IO) or reduce the ability of parallel access to the B+Tree.
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Although with the planned support of revision tracking (Section 4.6), efficiency of deletion
may not matter as the deletion operation would happen very rarely.

Loosely balanced B+Tree Approach

Here we define a “loosely balanced B+Tree” as a B+Tree where we are a little bit more
relaxed about balancing during insert operations. Since we can select the keys for an
object index, a pseudo-random number generator will generate numbers in a roughly equal
distribution. This means that the splitting of nodes should be fairly limited operation
especially if we do not mind that a single split makes the tree one level deeper in a single
area. The logic being that the random selection of keys will even up the height of the tree
over time as more keys are inserted.

The goal of the o-node index is to translate o-node ids to disk blocks so that the o-node
may then be read from disk. The structures are designed so that they are easily cachable
and will allow a the largest number of cache hits per cache size.
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Chapter 5

Implementation of a Walnut
Object Store

This chapter provides extra detail on some of the design decisions in Chapter 4. Informa-
tion presented in this chapter has a focus on implementation rather than overall design.
Detailed explanation as to the function, content of, validity of values and reasons behind
data structures and their fields are presented, along with behaviour required by software
accessing the volume directly. Where enough information and reasoning was presented in
Chapter 4, it has not been repeated here.

5.1 General Implementation Notes

5.1.1 Endianness

All on disk data structures will be kept in Big Endian format. The benchmarks performed
by SGI during the development of XFS((tes@sgi.com), 2002) show a minimal performance
impact from this decision.

The current implementation has been tested on big endian architectures (such as PowerPC)
and limited testing shows that the implementation is also functional on little endian systems
(such as i386). Currently the volumes produced on one system are incompatible with code
on another. Implementation and testing of endian conversion was not considered unique
enough to be part of this project. In the future it may be desirable to provide support for
little endian on disk formats, but there is little motivation to do so.
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5.2 Super Block

The main copy of the super block data structure (Listing 5.1) is stored at the start of the
first block of the volume. If as part of its boot requirements, a system needs space in the first
block of a disk partition, the super block may appear in the second block of the partition.

5.2.1 Superblock fields

magic1 The first magic number in the superblock, must be set to FCFS SB MAGIC1 (0x46436673).

version The version of the volume format used on this volume. It is left to the software to
determine if it can adequately access a volume with this version number. This allows
software to gracefully return an error in the case a future revision of the volume format
is not backwards compatible.

bits The base number of bits for file system fields. This is currently used only as a sanity
check (the value should be 64) but in the future may be used to indicate an extension
of the volume format which only differs in field size. It may be useful in embedded
systems to save space by only using a maximum of 32 bits throughout the object store.
See the more detailed description of the FCFS SB BITS constant in Section 5.2.2.

sblength Length of the super block (in bytes). This is set to sizeof(struct fcfs sb)

for the specific version of the volume format. This is used as a sanity check.

flags Various global settings for the volume such as if it was cleanly unmounted, if journal-
ing is enabled or if revisions to objects should be recorded. Flags are further defined
in Section 5.2.3 and the enum structure in Listing 5.3.

bsize The block size of the volume (in bytes). This field (along with the fields: blocksnr,
allocation groupsnr and ag blocksnr) can be used to check the sanity of the vol-
ume geometry as reported by any partitioning or block device software.

blocksnr The number of blocks (of size bsize) in the volume.

name A user defined null terminated ASCII string that is a user chosen, (theoretically)
human readable name for the volume up to FCFS NAME LENGTH characters (including
the terminating NULL). This field should be UTF-8 but current code only deals with
ASCII and this should be considered a bug in the current implementation.

magic2 The value of FCFS SB MAGIC2 (0x3f8ec2a1). This value has no special or hidden
meaning, it’s just strange.

allocation groupsnr Number of alloction groups on volume.

ag blocksnr Blocks per allocation group (except the last one which may be smaller).
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Listing 5.1: struct fcfs sb

1 struct f c f s s b {
2 u32 magic1 ; // f i r s t magic number .
3 u32 ve r s i on ; // ver s i on o f FS
4 u32 b i t s ; // number o f b i t s to use as a ’ base ’ b i t s . ( 6 4

d e f a u l t )
5 u32 sb length ; // l en g t h o f sb ( b y t e s )
6
7 u64 f l a g s ;
8
9 u32 b s i z e ; // b l o c k s i z e ( b y t e s )

10 u64 b locksnr ; // number o f b l o c k s
11
12
13 char name [FCFS NAME LENGTH ] ; // human readab l e name o f volume
14 u32 magic2 ; // magic2
15
16 u32 a l l o c a t i o n g r oup s n r ; /∗ Number o f a l l o c a t i o n groups on

volume ∗/
17 u32 ag b locksnr ; /∗ Blocks per a l l o c a t i o n group ∗/
18
19 u64 num mounts ; /∗ Number o f s u c c e s s f u l read /

wr i t e mounts ∗/
20 u64 num dirtymounts ; /∗ Num d i r t y mounts ∗/
21 u64 t ime c r ea t ed ; /∗ Time volume crea t ed ∗/
22 u64 t ime c l ean ; /∗ Time volume l a s t unmounted

c l e a n l y ∗/
23 u64 t ime dirtymount ; /∗ Time volume l a s t mounted d i r t y

∗/
24
25 u64 onode index b locknr ; /∗ Where we f i nd our primary

index ∗/
26
27 u64 onindex num onodes ; /∗ Num onodes in index ∗/
28 u64 onindex used ; /∗ Num of used inodes in index ∗/
29 u64 on index f r e e ; /∗ Num of f r e e onodes in index ∗/
30 u64 on index next id ; /∗ Next ID to use ∗/
31 u32 on index node s i z e ; /∗ In number o f keys ∗/
32
33 union spa c e t r a ck i ng {
34
35 char padding [ 5 0 ] ;
36 } space ;
37 } ;
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num mounts Records the number of successful read/write mounts where the volume was
cleanly unmounted prior to mounting. Read only mounts are not recorded due to
their “read only” nature. In case of overflow, the value should wrap around to zero.

num dirtymounts Records the number of successful times the volume has been mounted
after having been uncleanly unmounted (i.e. with the dirty flag set). Read only
mounting of an unclean volume will not change this field and in itself should be
strongly discouraged.

time created Set by the volume creation utility, this is the time volume created. The
value is seconds since the Epoch (00:00:00 UTC, January 1, 1970).

time clean Time volume last unmounted cleanly, in seconds since the Epoch (00:00:00
UTC, January 1, 1970).

time dirtymount Time the volume was last successfully mounted after an unclean un-
mount, in seconds since the Epoch (00:00:00 UTC, January 1, 1970).

onode index blocknr The block number of the root node of the o-node index.

onindex num onodes The number of o-nodes in the o-node index.

onindex used The number of used entries in o-node index leaves.

onindex free The number of unused entries in o-node index leaves.

onindex next id Currently unused in any implementation but the aim is to restore the
seed of the o-node id generator.

onindex node size The number of keys inside an o-node index node.

Padding Reserved for future use, should be created blank (filled with null bytes) by the
creation utility and unmodified by any volume manipulation software.

5.2.2 Superblock Constants

The constants (Listing 5.2) for this revision of FCFS include two magic numbers, where the
second one (FCFS SB MAGIC2) may change with major revisions of the system, indicating
total incompatibility with previous code. This is to allow software to gracefully return
an error indicating that although the volume appears to be valid, more recent software is
required to access it. The FCFS SB MAGIC1 value will remain constant across major revisions
of the on disk format. The FCFS SB VERSION1 field shall change in future incompatible
revisions of the storage system. The FCFS SB BITS field indicates the base number of bits
used in on disk data structures. Currently the system is designed to be 64 bits but this field
enables a future revision of the code to scale up (or down) to other sizes. It is currently only
used as a sanity check. The FCFS NAME LENGTH value is a #define purely for convenience.
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5.2.3 FCFS Super Block Flags

The flags field in the super block (Listing 5.1) is populated by setting the bits as per the
enum in Listing 5.3.

FCFS FLAG SBLocation1, FCFS FLAG SBLocation2, FCFS FLAG SBLocation3
Are defined according to the enum fcfs sb location (Listing 5.4) to indicate where
this copy of the superblock is (or at least should be) on disk. This can be used to aid
in volume recovery where the volume geometry is unknown.

FCFS FLAG Dirty When set, the volume was not cleanly unmounted and requires a
consistency check or journal replay. We do not currently do nothing with this flag
apart from warn the user.

FCFS FLAG Experimental Any code that is of an experimental nature (e.g. in active
development and debugging of the volume format) should set this flag on a volume.
Once set, this flag may never be unset, not even after a complete consistency check
of the system.

Upon mounting of a volume with this flag set, the user should be warned that they
are playing with fire and are going to be in trouble. This flag should be thought of as
a “don’t come whining to us when all your data suddenly vanishes” flag.

FCFS FLAG JournalMeta When set, the volume journals meta data. This flag is a
placeholder as no implementation or specification of a journal format exists.

FCFS FLAG JournalData When set, the volume journals object data. This flag is a
placeholder as no implementation or specification of a journal format exists.

FCFS FLAG Versioned When set, all revisions to all forks of all objects are tracked
unless they explicitly state otherwise (or are the forks used by the revision tracking
system).

5.3 Block Run

The fcfs block run structure (Listing 5.5) is capable of addressing 232 blocks (via the len
field), which may be up to 232 bytes in size. In reality, no block size is ever going to be
232 bytes long, a more typical size is 4kb (4096 bytes) as this fits in nicely with the IA32
processor family’s page size. With this block size, a single fcfs block run structure will
address a maximum of 244 bytes of data. Although the probability of an object ever needing
to have several fcfs block runs of this length, the alternative of having a 16 bit length
field seemed overly limiting when considering the rate at which disk and file sizes have been
increasing over time.
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Listing 5.2: FCFS Super Block Defines

1 #define FCFS SB MAGIC1 0x46436673 /∗ FCFS ∗/
2 #define FCFS SB VERSION1 0 x00010001 /∗ V1 SB , V1 FS ∗/
3 #define FCFS SB BITS 0x00000040 /∗ We’ re 64 b i t − but cou ld

be b i g g e r . . . ∗/
4
5 #define FCFS NAME LENGTH 128 /∗ Human Readable Name ∗/
6 #define FCFS SB MAGIC2 0 x3f8ec2a1 /∗ There i s no meaning , j u s t

weird num ∗/

Listing 5.3: enum fcfs sb flags

1 enum f c f s s b f l a g s {
2 FCFS FLAG SBLocation1 , /∗ Three f l a g s make number ∗/
3 FCFS FLAG SBLocation2 , /∗ see : enum f c f s s b l o c a t i o n ∗/
4 FCFS FLAG SBLocation3 ,
5 FCFS FLAG Dirty , /∗ Was unc l ean l y unmounted∗/
6 FCFS FLAG Experimental , /∗ Has been wr i t t en by

exper imenta l code ∗/
7 FCFS FLAG JournalMeta , /∗ Journal meta−data ∗/
8 FCFS FLAG JournalData , /∗ Journal a l l data wr i t e s ∗/
9 FCFS FLAG Versioned , /∗ I s ve r s i oned system ∗/

10 } ;

Listing 5.4: enum fcfs sb location

1 enum f c f s s b l o c a t i o n {
2 FCFS SBloc start volume , /∗ S t a r t o f volume ∗/
3 FCFS SBloc start ag , /∗ S t a r t o f a l l o c a t i o n group ∗/
4 FCFS SBloc end volume /∗ Fina l b l o c k o f volume ∗/
5 } ;
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The allocation group and start fields can represent any of the 264 possible blocks on a
volume. Although the fcfs block run structure s the major cause of the restriction of the
number of blocks in an allocation group, the 232 limit is not viewed as overly restrictive.

The alternative of having an absolute, 64bit block number and a 32 bit length field was
considered, but rejected as this removes our concept of allocation groups which have proven
to be very useful for parallelism in other systems such as XFS.

The BeFS block run (Figure 2.8) had the advantage of being 64 bits long, the same as an
absolute block number on a 64 bit system. Although we use an extra 32 bits per block run,
the advantage of

Listing 5.5: struct fcfs block run

1 struct f c f s b l o c k r u n {
2 u32 a l l o c a t i o n g r oup ; /∗ Al l o ca t i on group ∗/
3 u32 s t a r t ; /∗ S t a r t Block ∗/
4 u32 l en ; /∗ Length ( b l o c k s ) ∗/
5 } ;

5.3.1 Special cases

A block run with an allocation group of zero and a start value of zero should be con-
sidered part of a sparse object. That is, when read, NULL values are returned and when
written to, disk space is allocated for that block.

The other special case for a fcfs block run is where part of the disk has gone bad and
can no longer be referenced. In this case, the allocation group will be 0xFFFFFFFF and
the start block will be 0xFFFFFFFF. This will be set in the case where blocks previously
occupied were found to be defective or when an object was copied from a volume where part
of the media was defective. It is left up to the host system the exact behaviour of relaying
this message to users - if there is a warning on initial access to the object or if there are
errors when accessing these parts of the object. These values should also be used for when
part of a fcfs block run was found to be corrupted.

5.3.2 Corruption

A fcfs block run is corrupt when:

• The allocation group is larger than the allocation groupsnr value in the super
block and is not zero (for sparse) or 0xFFFFFFFF (for was corrupt)

• The start value is larger than the ag blocksnr field in the super block or in the last
allocation group, the start value is greater than blocksnr − (allocationgroupsnr ×
agblocksnr) (all values stored in the super block)
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• The start + len values (from the fcfs block run structure) are greater than the
ag blocksnr value from the super block, or in the case of the last allocation group,
greater than blocksnr − (allocationgroupsnr × agblocksnr) (all values stored in the
super block)

5.4 O-Node

5.4.1 O-Node fields

The purpose of each field in the fcfs onode1 structure (Listing 5.6) is:

magic1 Identifies this disk block as containing an O-Node by storing the value of FCFS ONODE MAGIC1,
which is the 64 bit number 0x4f4e6f4465563101 (the first seven bytes of which repre-
sent the ASCII string “ONoDeV1”). This can aid in volume recovery and debugging
by being easily identifiable and uncommon to be at the beginning of a disk block.

onode num A 64 bit identifier for the o-node which is unique to this volume. May be
allocated in any way, but should be tied in with the implementation of the o-node index
as this will allow close optimisation of the o-node index. This value will commonly be
referred to as the o-node Id.

onode revision Incremented each time the o-node is updated. This may be useful in
networked environments when trying to determine if a cached copy of the o-node
is current. This field may also be useful in volume recovery if an o-node has been
relocated on disk, the one with the higher revision will be more recent.

flags See section 5.4.2

use count Number of times this o-node is referenced in indices. Future revisions of the
volume format may choose to support more than one o-node index using data other
than the Id as the key. Such indices could be useful in indexing meta-data. When the
o-node is deleted from the main index, this should drop to zero and the o-node should
be written to disk. This will aid any undelete or volume recovery utility in locating
deleted o-nodes. Although, with revision tracking (Section 4.6) it is doubtful if the
removal of an o-node will ever happen.

onode size The size (in bytes) of the o-node structure. Mainly used as a sanity check but
could also be used in a consistency checker or volume recovery tool to help identify
an o-node.
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5.4.2 O-Node Flags

FCFS OFLAG NoVersion When set, no fork in the object should have its revisions
tracked. This is a global override and is intended for debugging purposes only as the
revision tracking code should never be run (for this o-node) when this flag is set.

FCFS OFLAG ForkLeaf The forks union part of the o-node structure contains a fcfs fork leaf

structure and not a fcfs fork node. This should be the case when there are 10 or
less forks as the fcfs fork leaf structure (Listing 5.8) can hold up to 10 forks.

5.5 Forks

Fork Node

The fcfs fork node structure (Listing 5.7) is a node in the B+Tree of forks belonging
to an o-node. To support more than one level of nodes (the one in the o-node), a magic
number will need to be added to the data structure so that a block may be easily identified
as a node or leaf. Due to time constraints, this is left as an exercise for a future revision.

offset the maximum fork type in the subtree. Zero if there is no subtree.

block the block number of the node or leaf. Zero if there is no subtree.

Listing 5.7: O-node1 fork node

1 struct f c f s f o r k n o d e {
2 u64 o f f s e t [ 7 ] ;
3 u64 b lock [ 7 ] ;
4 } ;

Fork Leaf

The fcfs fork leaf structure (Listing 5.8) contains nr number of fcfs fork structures
up to a maximum of 10. In future revisions, this limit should be based on the size of the
block or space in the o-node and not the arbitrary constant of 10.

Listing 5.8: O-node1 fork leaf

1 struct f c f s f o r k l e a f {
2 char nr ;
3 struct f c f s f o r k fo rk [ 1 0 ] ;
4 } ;
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Listing 5.6: O-node Revision 1

1 #define FCFS ONODE MAGIC1 0x4f4e6f4465563101ULL /∗
ONoDeV1 0 x01 ∗/

2
3 enum f c f s o n o d e f l a g s {
4 FCFS OFLAG NoVersion , /∗ Don ’ t ve r s i on t rack t h i s onode

∗/
5 FCFS OFLAG ForkLeaf /∗ We have a f o r k l e a f , not a

node ∗/
6 } ;
7
8 struct f c f s onode1 {
9 u64 magic1 ; /∗ I d e n t i f y as O−Node ∗/

10 u64 onode num ; /∗ FS Sp e c i f i c Unique ID ∗/
11 u64 onode r ev i s i on ; /∗ Revis ion o f onode ∗/
12 u64 f l a g s ; /∗ f c f s o n o d e f l a g s ∗/
13 u64 use count ; /∗ Reference Counter ( f o r i nd i c e s

) ∗/
14 u32 onode s i z e ; /∗ Length o f o−node s t r u c t u r e . ∗/
15 union f o r k s {
16 struct f c f s f o r k l e a f l e a f ;
17 struct f c f s f o r k n o d e node ;
18 } f o r k s ;
19 char sma l l space [ 1 ] ; /∗ used f o r in−onode data ( or

metadata ) ∗/
20 } ;
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Fork

The fcfs fork data structure (Listing 5.9) contains the following fields:

fork type What type of data the fork contains. Systems may define their own values for
specific types of data (e.g. Resource fork, i-node equivalent data) and may choose to
use an external index to map fork type values to human readable names.

fork flags See Section 5.5

content length Length (in bytes) of the data stored in this fork.

Fork Flags

The flags for a fcfs fork structure (Listing 5.9) are:

FCFS FORK InForkData When set, the data union of the fcfs fork structure con-
tains small data and not the space union.

FCFS FORK SpaceNode When set, the space union (which is part of the data union)
in the fcfs fork structure contains a fcfs onode1 space node and not a fcfs onode1 space leaf.

Listing 5.10: O-node1 fork flags

1 enum f c f s f o r k f l a g s {
2 FCFS FORK InForkData , /∗ We have data , not space nodes

∗/
3 FCFS FORK SpaceNode /∗ Space i s node , not l e a f ∗/
4 } ;

5.6 O-Node Index

5.6.1 O-node Index Node

The node of the o-node index (Listing ??) has the number of struct fcfs onode index node items

in the items array as defined in the onindex node size field of the super block (See Section
5.2.1).

5.6.2 O-node Index Leaf

The O-Node Index Leaf (Listing 5.12) contains an ordered list of o-node IDs (the key) and
the o-node block number (the value). The block field is the number of the disk block this
structure is in and is used for sanity checking. The used field indicates how many items
have been used in this leaf.
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Listing 5.9: O-node1 fork

1 #define FCFS FORK SMALL DATA SIZE 112
2
3 struct f c f s f o r k {
4 u64 f o r k type ;
5 u64 f o r k f l a g s ;
6 u64 content l eng th ;
7 union data {
8 union space {
9 struct f c f s o n o d e 1 s p a c e l e a f l e a f ;

10 struct f c f s onode1 spa c e node node ;
11 } space ;
12
13 char sma l l da ta [FCFS FORK SMALL DATA SIZE ] ; /∗ I wish t h i s

was neater , as par t o f the l e a f ∗/
14 } data ;
15 } ;

Listing 5.11: O-node Index Node

1 #define FCFS ONODE INDEX NODE MAGIC1 0 x4f6e4944784e4445ULL /∗
OnIDxNDE ∗/

2
3 struct f c f s onode i ndex node i t em {
4 u64 key ;
5 u64 node b locknr ;
6 } ;
7
8 struct f c f s onode i ndex node {
9 u64 magic1 ; /∗ FCFS ONODE INDEX NODE MAGIC1

∗/
10 u64 id ; /∗Not n e c e s s a r i l y unique , used

f o r l o c k i n g ∗/
11 u64 b lock ;
12 u64 used ;
13 struct f c f s onode i ndex node i t em items [ 1 ] ;
14 } ;
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5.7 Revision Tracking

5.7.1 Revision Information fork

Is a series of struct fcfs onode fork rev structures (Listing 5.13). When a new operation
is written to disk, a fcfs onode fork rev is appended to the revision information fork.
Once written, no editing of these structures should be performed.

Revision Information Fork Fields

revision Revision that this operation relates to.

consistent revision The last consistent revision written to disk.

time The time this revision was created. Note that this is not the time this revision was
committed.

operation The operation this structure describes. See Section 5.7.1 and Listing 5.14.

magic1 FCFS ONODE FORK REV MAGIC1

rev offset Offset in revision data fork for data to use in the operation.

rev length Length of the data in the revision data fork.

offset Offset in the fork to apply the operation to.

space Reserved for future use.

Revision Operations

Currently, the operations supported (Listing 5.14) are:

FCFS ONODE FORK REV REPLACE Replace rev length bytes starting at offset
with rev length bytes starting from rev offset in the Revision Data Fork (Section
??)

FCFS ONODE FORK REV INSERT Insert rev length bytes at offsetwith rev length

bytes starting from rev offset in the Revision Data Fork (Section ??)

FCFS ONODE FORE REV APPEND Append rev length bytes starting from rev offset

in the Revision Data Fork (Section ??)

FCFS ONODE FORK REV TRUNCATE Truncate rev length bytes starting from
offset. The term truncate is used but the structure of the command could also
accommodate the deletion of a length of bytes.
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Listing 5.12: O-node Index Leaf

1 #define FCFS ONODE INDEX LEAF MAGIC1 0 x4f6e4944784c6665ULL /∗
OnIDxLfe ∗/

2
3 struct f c f s o n o d e i n d e x l e a f i t em {
4 u64 key ;
5 u64 onode b locknr ;
6 } ;
7
8 struct f c f s o n o d e i n d e x l e a f {
9 u64 magic1 ; /∗ FCFS ONODE INDEX LEAF MAGIC1

∗/
10 u64 id ; /∗ Not n e c e s s a r i l y unique , used

f o r l o c k i n g ∗/
11 u64 b lock ;
12 u64 used ;
13 struct f c f s o n o d e i n d e x l e a f i t em items [ 1 ] ;
14 } ;

Listing 5.13: O-node fork Revision Information Fork

1 #define FCFS ONODE FORK REV MAGIC1 0 xF0526B76 /∗ 0 xF0 ’R ’ ’ k ’ ’
v ’ ∗/

2
3 struct f c f s o n o d e f o r k r e v {
4 u64 r e v i s i o n ; /∗ Increment f o r each r e v i s i o n ∗/
5 u64 c o n s i s t e n t r e v i s i o n ; /∗ Used to note l a s t c o n s i s t e n t

r e v i s i o n ∗/
6 u64 time ; /∗ Time r e v i s i o n was done ( not

committed ) ∗/
7 u32 ope ra t i on ; /∗ enum f c f s o n o d e f o r k r e v o p ∗/
8 u32 magic1 ; /∗ FCFS ONODE FORK REV MAGIC1 ∗/
9 u64 r e v o f f s e t ; /∗ Of f s e t in r e v i s i o n f o r k ∗/

10 u64 r ev l eng th ; /∗ Length o f r e v i s i o n f o r k data
∗/

11 u64 o f f s e t ; /∗ Of f s e t in r e a l f o r k to app ly
to ∗/

12 char space [ 1 6 ] ; /∗ Space f o r f u t u r e r e v i s i o n s ∗/
13 } ;
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FCFS ONODE FORK REV GROW fill rev length bytes with null bytes at offset.

5.7.2 Revision Data Fork

The revision data fork contains the data referenced by the Revision Information Fork (Sec-
tion 5.7.1). This fork is only ever appended to or read from, no other modifications should
ever be made.
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Listing 5.14: O-node fork Revision Information Fork Operations

1 enum f c f s o n od e f o r k r e v op {
2 FCFS ONODE FORK REV REPLACE,
3 FCFS ONODE FORK REV INSERT,
4 FCFS ONODE FORE REV APPEND,
5 FCFS ONODE FORK REV TRUNCATE,
6 FCFS ONODE FORK REV GROW,
7 } ;
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Chapter 6

Conclusion

The work in this thesis was motivated by the need to supply the Walnut kernel with a fast,
efficient and robust object store. It has focused on solving problems specific to Walnut as
well as more general problems faced by systems implementing new features as part of their
object stores.

This thesis has presented the design and implementation details of an improved object store
for the Walnut kernel. The design is based on proven techniques from other systems and
strong theoretical and practical knowledge.

We identify a volume by a super block, a data structure containing information on where
other structures are stored on disk and other statistics about the volume such as the date
it was created and last used. Copies are kept on other parts of the disk in case the primary
super block is damaged. This is a solid and proven method that is used widely among
similar systems.

Although no direct structure exists for them, we separate the disk into allocation groups
which allows for increased parallelism. We reference disk blocks by a block run structure,
referred to by some systems as extents. It allows us to optimise for the optimal case where
blocks are allocated in a contiguous block.

Free blocks are tracked in a block bitmap, implemented because it is relatively easy to code
in a bug free manner. In the future, a set of B+Trees is viewed as the alternative that
should be used so that allocating blocks based on locality or number of contiguous blocks
is a simpler operation.

Objects are described by the o-node data structure which allows great flexibility and ex-
tensibility in the future. By having the o-node point to an arbitrary number of arbitrarily
sized forks we are able to use these forks to implement additional features of the object
store such as revision tracking on top of a well tested and simple base, avoiding needless
complexity and possible bugs. For the existing Walnut model, an object would consist of
two forks: one containing the dope and the other the body. Since we make optimisations
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for small forks by storing them in the same disk block as the o-node (and the dope is a
small structure), there will be little or no performance penalty over the current method of
writing objects to disk.

Although not implemented, we have discussed various possible methods to have fine grained
access control to meta-data. We introduce a method to support links to meta-data, provid-
ing an efficient way for relationships between objects to be realised and potentially optimised
for.

By using B+Trees to reference data structures (such as forks) and in the o-node index we
provide scalability to large data sets which makes our system competitive with the best of
existing systems. Because we do not statically assign o-nodes to disk blocks, we can write
objects to disk to optimise for locality dramatically improving performance over the existing
Walnut object store.

We have discussed and implemented a basic form of revision tracking into the object store,
providing a facility to ensure processes and their data objects are in a consistent state
before they are resumed and providing real functionality to users which was previously only
available with specialised software.

From examining the implications of implementing revision tracking we realised that there
needs to be further study in the area of temporal windowing. That is, a method to securely
provide access to previous revisions of objects.

Although our current implementation is only at a proof-of-concept stage, it has allowed us
to test the design of the system and preliminary tests and code optimisations have only
reinforced the theory that the system presented here is fast, efficient and reliable. There is
no reason why future work could not advance the implementation to a stage where it could
be used as a live object store for an operating system such as Walnut.



68

References

A Fast File System for UNIX (1984). University of California, Berkeley.

Anderson, C. (1993a). xfs attribute manager design, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/

Anderson, C. (1993b). xfs namespace manager design, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/

Anderson, C., Doucette, D., Glover, J., Hu, W., Nishimoto, M., Peck, G. and Sweeney, A.
(1993). xfs project architecture, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/

Anderson, M., Pose, R. D. and Wallace, C. S. (1986). A Password-Capability system, The
Computer Journal 1-8(1).

Card, R., Ts’o, T. and Tweedie, S. (n.d.). Design and implementation of the second extended
filesystem, Proceedings of the First Dutch International Symposium on Linux, number
ISBN 90 367 0385 9, Laboratoire MASI — Institut Blaise Pascal and Massachussets
Institute of Technology and University of Edinburgh.
*http://web.mit.edu/tytso/www/linux/ext2intro.html

Castro, M. D. (1996). The Walnut Kernel: A Password-Capability Based Operating System,
PhD thesis, Monash University.

Ceelen, C. (2002). Implementation of an orthogonally persistent l4 microkernel based sys-
tem, Technical report, Universitat Karlsruhe. Supervisor: Cand. Scient and Espen
Skoglund.
*http://i30www.ira.uka.de/teaching/thesisdocuments/ceelen study studi.pdf

Crane, A. (1999). Ext2 undeletion, Technical report.
*http://www.praeclarus.demon.co.uk/tech/e2-undel/

Doucette, D. (1993a). xfs kernel threads support, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/



69

Doucette, D. (1993b). xfs message system design, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/

Doucette, D. (1993c). xfs project description, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/

Doucette, D. (1993d). xfs simulation environment, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/

Doucette, D. (1993e). xfs space manager design, Technical report, Silicon Graphics.

Elnozahy, E. N., Johnson, D. B. and Zwaenepoel, W. (1992). The performance of consistent
checkpointing, Proceedings of the 11th Symposium on Reliable Distributed Systems,
IEEE Computer Society, Houston, Texas 77251-1892, pp. 39–47.
*http://www.cs.rice.edu/ dbj/ftp/srds92.ps

Folk, M. J. and Zoellick, B. (1987). File Structures: A Conceptual Toolkit, Addison-Wesley
Publishing Company.

Giampaolo, D. (1999). Practical FileSystem Design with the Be File System, Morgan Kauf-
mann Publishers, Inc., chapter 1.

Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S. and Liedtke, J. (1998). The Mungi
single-address-space operating system, Software Practice and Experience 28(9): 901–
928.
*citeseer.nj.nec.com/heiser98mungi.html

Hitz, D., Lau, J. and Malcolm, M. (n.d.). File system design for an nfs file server.
*http://www.netapp.com/tech library/3002.html

III, G. G. R. and Singhal, M. (1993). Using logging and asynchronous checkpointing to
implement recoverable distributed shared memory, Technical report, Department of
Computer and Information Science, The Ohio State University.
*http://camars.kaist.ac.kr/ yjkim/ftsdsm/richard93using.pdf

Inc., A. C. (n.d.). Hfs plus volume format, Technical report, Apple Computer Inc. Technical
Note TN1150.

Inside Macintosh: More Macintosh Toolbox (1993). Addison-Wesley.

Jannink, J. (1995). Implementing deletion in B+-trees, SIGMOD Record (ACM Special
Interest Group on Management of Data) 24(1): 33–38.
*citeseer.nj.nec.com/jannink95implementing.html

Janssens, B. and Fuchs, W. K. (1993). Relaxing consistency in recoverable distributed
shared memory, Technical report, Center for Reliable and High Performance Comput-
ing Coordinated Science Laboratory, University of Illinois.
*http://citeseer.nj.nec.com/rd/35597259%2C83458%2C1%2C0.25%2CDownload/http://citeseer.nj.nec.com/cache/papers/cs/6043/http:zSzzSzdynamo.ecn.purdue.eduzSz%7EfuchszSzfuchszSzftcsBJ93.pdf/janssens93relaxing.pdf



70

Kopp, C. (1996). An i/o and stream inter-process communications library for password ca-
pability system, Master’s thesis, Department of Computer Science, Monash University.

Liedtke, J. (1993). A persistent system in real use: Experiences of the first 13 years, German
National Research Center for Computer Science .
*http://citeseer.nj.nec.com/liedtke93persistent.html

MacDonald, J. P. (n.d.). File system support for delta compression, Technical report, Uni-
versity of California at Berkeley.

MacDonald, J., Reiser, H. and Zarochentcev, A. (2002). Reiser4 transaction design docu-
ment, Technical report, Namesys.
*http://www.namesys.com/txn-doc.html

McKusick, M. K. and Ganger, G. R. (1999). Soft updates: A technique for eliminating
most synchronous writes in the fast filesystem, Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference, The USENIX Association.

Nishimoto, M. (1994). The log manager (xlm), Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/

Phillips, D. (2001). A directory index for ext2, Technical report.
*http://people.nl.linux.org/ phillips/htree/paper/htree.html

Reiser, H. (2001). Reiserfs v.3 whitepaper, Technical report, NameSys, 6979 Exeter Dr.,
Oakland, CA 94611-1625.
*http://www.namesys.com/content table.html

Reiser, H. (2002-2003). Reiser4, Technical report, Namesys. Accessed: 23/4/2003.
*http://www.namesys.com/v4/v4.html

Seltzer, M., Bostic, K., McKusick, M. K. and Staelin, C. (1993). An implementation of a
log-structured file system for unix, USENIX.

Skoglund, E., Ceelen, C. and Lidtke, J. (2000). Transparent orthogonal checkpointing
through user-level pagers, Technical report, System Architecture Group, University of
Karlsruhe.
*http://uhlig-langert.de/publications/files/l4-checkpointing.pdf

Smith, S. (2003). Interim honors presentation: The walnut kernel, Technical report, Monash
University.

Sweeney, A. (1993a). 64 bit file access, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/

Sweeney, A. (1993b). xfs superblock management, Technical report, Silicon Graphics.
*http://oss.sgi.com/projects/xfs/



71

Sweeney, A. (1993c). xfs transaction mechanism, Technical report, Silicon Graphics.

Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M. and Peck, G. (1996).
Scalability in the xfs file system, USENIX Conference.

(tes@sgi.com), T. S. (2002). Re: Question about litte and big endian?, Electronic Mailing
List - linux-xfs@oss.sgi.com.
*http://linux-xfs.sgi.com/projects/xfs/mail archive/200209/msg00409.html

The FreeBSD Handbook (1995-2003). The FreeBSD Documentation Project.
*http://www.freebsd.org/doc/en US.ISO8859-1/books/handbook/configtuning-
disk.html

Tichy, W. F. (1985). RCS - a system for version control, Software - Practice and Experience
15(7): 637–654.
*citeseer.nj.nec.com/tichy91rcs.html

Tridgell, A. (1999). Efficient Algorithms for Sorting and Synchronization, PhD thesis, The
Australian National University.
*http://samba.org/ tridge/phd thesis.pdf

Tweedie, S. C. (1998). Journaling the linux ext2fs filesystem, Technical report, LinuxExpo
98.

Wallace, C. and Pose, R. (1990). Charging in a secure environment.
*http://www.csse.monash.edu.au/courseware/cse4333/rdp-material/Bremen-
paper.pdf

Wallace, C. S., Pose, R., Castro, M., Kopp, C., Pringle, G., Gunawan, S. and Jan... (2003).
Informal discussions relating to the walnut kernel.

Woodhouse, D. (2001). Jffs: The journalling flash file system, Ottawa Linux Symposium,
RedHat Inc.
*http://sources.redhat.com/jffs2/jffs2.pdf



72

Simulation Source Code

The source code is also available from http://www.flamingspork.com/honors/ and is
provided here for reference and in support of the thesis.

.1 Source Code License

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free

software--to make sure the software is free for all its users. This

General Public License applies to most of the Free Software

Foundation’s software and to any other program whose authors commit to

using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you

have the freedom to distribute copies of free software (and charge for

this service if you wish), that you receive source code or can get it

if you want it, that you can change the software or use pieces of it

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you
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distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the

source code. And you must show them these terms so they know their

rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,

distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we

want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original

authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the

program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed

under the terms of this General Public License. The "Program", below,

refers to any such program or work, and a "work based on the Program"

means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it,

either verbatim or with modifications and/or translated into another

language. (Hereinafter, translation is included without limitation in

the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program

is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.
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1. You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty;

and give any other recipients of the Program a copy of this License

along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices

stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modified program normally reads commands interactively

when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide

a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this

License. (Exception: if the Program itself is interactive but

does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or
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collective works based on the Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of

Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

years, to give any third party, for a charge no more than your

cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer

to distribute corresponding source code. (This alternative is

allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such

an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

making modifications to it. For an executable work, complete source

code means all the source code for all modules it contains, plus any

associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a

special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component

itself accompanies the executable.

If distribution of executable or object code is made by offering

access to copy from a designated place, then offering equivalent

access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is
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void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such

parties remain in full compliance.

5. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the

Program), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to

these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to

this License.

7. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under

any particular circumstance, the balance of the section is intended to

apply and the section as a whole is intended to apply in other

circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing
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to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License

may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among

countries not thus excluded. In such case, this License incorporates

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will

be similar in spirit to the present version, but may differ in detail to

address new problems or concerns.

Each version is given a distinguishing version number. If the Program

specifies a version number of this License which applies to it and "any

later version", you have the option of following the terms and conditions

either of that version or of any later version published by the Free

Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software

Foundation.

10. If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author

to ask for permission. For software which is copyrighted by the Free

Software Foundation, write to the Free Software Foundation; we sometimes

make exceptions for this. Our decision will be guided by the two goals

of preserving the free status of all derivatives of our free software and

of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES

PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
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WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY

YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER

PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least

the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this

when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it
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under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate

parts of the General Public License. Of course, the commands you use may

be called something other than ‘show w’ and ‘show c’; they could even be

mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a "copyright disclaimer" for the program, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General

Public License instead of this License.

.2 Testkit Block Device Simulator

Listing 1: testkit/Makefile

1 a l l : t e s t k i t . o b l k t e s t doc
2
3 GLIB CFLAGS = ‘ g l ib−c on f i g −− c f l a g s g l ib ‘
4 GLIB LIB = ‘ g l ib−c on f i g −− l i b s g l i b ‘
5 CFLAGS:=−g
6
7 b l k t e s t : t e s t k i t . o b l k t e s t . c
8 $ (CC) −o $@ $ ˆ $ (GLIB CFLAGS) $ (GLIB LIB) $ (CFLAGS)
9

10 t e s t k i t . o : b lock dev . c
11 $ (CC) −c $< $ (GLIB CFLAGS) $ (CFLAGS) −o t e s t k i t . o
12
13 .PHONY: c l ean
14
15 c l ean :
16 rm − f b l k t e s t t e s t k i t . o



80

Listing 2: testkit/bitops.h

1 /∗
2 b i t o p s . h
3 −−−−−−−−
4 $Id : b i t o p s . h , v 1 .3 2003/07/06 12 :28 :03 s t ewar t Exp $

5
6 f un c t i on s s im i l a r to those pre sen t in i n c l ud e /asm/ b i t o p s . h
7 There i s no ∗ r e a l ∗ guarantee o f be ing atomic , excep t f o r the
8 ”we ’ re not doing th reads so go away ” t h i n g .
9

10 (C) 2003 Stewart Smith
11 Di s t r i b u t e d under the GNU Pub l i c License .
12
13 Some data s t r u c t u r e s have been cons t ruc t ed out o f t ho se
14 pre sen t in the Linux Kernel ( v2 . 5 . 6 9 ) . They are copy r i g h t
15 o f t h e i r r e s p e c t i v e owners .
16
17 The API here i s very much based on Linux k e rne l s t u f f .
18 Except t h a t we don ’ t do i n l i n e ASM to do t h i s ’ atomic ’ s t u f f .
19 bah − we l i v e on the edge baby !
20 ∗/
21
22 #ifndef BITOPS H
23 #define BITOPS H
24
25 #define ADDR ( ∗ ( volat i le long ∗ ) addr )
26
27 stat ic i n l i n e void s e t b i t ( int nr , volat i le void ∗ addr )
28 {
29 ADDR = ADDR | 1UL << nr ;
30 }
31
32 stat ic i n l i n e int t e s t a n d s e t b i t ( int nr , volat i le void ∗ addr )
33 {
34 int o l db i t ;
35 o l db i t = ADDR & 1UL << nr ;
36 s e t b i t ( nr , addr ) ;
37 return o l db i t ;
38 }
39
40 stat ic i n l i n e void c l e a r b i t ( int nr , volat i le void ∗ addr )
41 {
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42 ADDR = ADDR & ˜(1UL << nr ) ;
43 }
44
45 stat ic i n l i n e int t e s t a nd c l e a r b i t ( int nr , volat i le void ∗ addr )
46 {
47 int o l db i t ;
48 o l db i t = ADDR & (1UL << nr ) ;
49 c l e a r b i t ( nr , addr ) ;
50 return o l db i t ;
51 }
52
53 stat ic i n l i n e int t e s t b i t ( int nr , volat i le void ∗ addr )
54 {
55 return ADDR & (1UL << nr ) ;
56 }
57
58 #endif
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Listing 3: testkit/types.h

1 /∗
2 t ype s . h
3 −−−−−−−
4 $Id : t ype s . h , v 1 .4 2003/07/06 12 :27 :37 s t ewar t Exp $

5
6 Mostly g l u e around type s t h a t would u s u a l l y be de f ined by the

system .
7 This i s more p o r t a b l e ( un f o r t una t e l y ) .
8 ∗/
9 #ifndef TYPES H

10 #define TYPES H
11
12 #include < sys / types . h>
13
14 typedef i n t 1 6 t s16 ;
15 typedef u i n t 1 6 t u16 ;
16 typedef i n t 3 2 t s32 ;
17 typedef u i n t 3 2 t u32 ;
18 typedef i n t 6 4 t s64 ;
19 typedef u i n t 6 4 t u64 ;
20
21 typedef u64 s e c t o r t ;
22 typedef int atomic t ;
23
24 #endif
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Listing 4: testkit/block dev.h

1 /∗
2 b l o c k d e v . h
3 −−−−−−−−−−−
4 $Id : b l o c k d e v . h , v 1 .13 2003/10/01 05 :42 :06 s t ewar t Exp $

5
6 Designed to be ra the r s im i l a r to the Linux Buf fer Cache ,
7 i . e . wi th f unc t i on s l i k e bread ( ) e t a l t h a t func t i on s im i l a r l y .
8 Should a l l ow t e s t i n g and deve lopment o f f i l e s y s t em s pure l y in
9 userspace and pure l y in an a p p l i c a t i o n .

10 User Mode Linux cou ld be used f o r t h i s , bu t t h i s s u i t e i s
des igned

11 f o r even e a r l i e r in the de s i gn proce s s .
12
13 (C) 2003 Stewart Smith
14 Di s t r i b u t e d under the GNU Pub l i c License .
15
16 Some data s t r u c t u r e s have been cons t ruc t ed out o f t ho se
17 pre sen t in the Linux Kernel ( v2 . 5 . 6 9 ) . They are copy r i g h t
18 o f t h e i r r e s p e c t i v e owners .
19 ∗/
20
21 #ifndef BLOCK DEV H
22 #define BLOCK DEV H
23
24 #include ” types . h”
25 #include ” b i tops . h”
26 #include < g l i b . h>
27
28 /∗
29 s t r u c t b l o c k d e v i c e
30 −−−−−−−−−−−−−−−−−−−
31 A r e a l l y s imp le b l o c k d e v i c e s t r u c t u r e .
32 $Id : b l o c k d e v . h , v 1 .13 2003/10/01 05 :42 :06 s t ewar t Exp $

33 ∗/
34 struct b l o ck dev i c e {
35 char ∗ name ;
36 int f i l e o n d i s k ;
37 u64 b l o c k s i z e ;
38 u64 num blocks ;
39
40 /∗ I n t e rna l ∗/
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41 u64 ca ch e h i t ;
42 u64 c a c h e h i t c l e a r ;
43 u64 cache miss ;
44 u64 c a c h e m i s s c l e a r ;
45 } ;
46
47 struct supe r b lo ck {
48 // s t r u c t l i s t h e a d s l i s t ; /∗ Keep t h i s f i r s t ∗/
49 // de v t s dev ; /∗ search index ;

no t k d e v t ∗/
50 unsigned long s b l o c k s i z e ;
51 unsigned long s o l d b l o c k s i z e ;
52 unsigned char s b l o c k s i z e b i t s ;
53 unsigned char s d i r t ;
54 unsigned long long s maxbytes ; /∗ Max f i l e s i z e

∗/
55 // s t r u c t f i l e s y s t em t y p e ∗ s t y p e ;
56 // s t r u c t s up e r op e r a t i on s ∗ s op ;
57 // s t r u c t d quo t op e r a t i on s ∗ dq op ;
58 // s t r u c t q u o t a c t l o p s ∗ s qcop ;
59 // s t r u c t e x po r t o p e r a t i on s ∗ s e x po r t o p ;
60 unsigned long s f l a g s ;
61 unsigned long s magic ;
62 // s t r u c t dentry ∗ s r o o t ;
63 // s t r u c t rw semaphore s umount ;
64 // s t r u c t semaphore s l o c k ;
65 int s count ;
66 int s s yn c i ng ;
67 int s n e e d s yn c f s ;
68 // a tomic t s a c t i v e ;
69 void ∗ s s e c u r i t y ;
70
71 // s t r u c t l i s t h e a d s d i r t y ; /∗ d i r t y inodes ∗/
72 // s t r u c t l i s t h e a d s i o ; /∗ parked f o r wr i t e back

∗/
73 // s t r u c t h l i s t h e a d s anon ; /∗ anonymous d en t r i e s f o r

( n f s ) expor t ing ∗/
74 // s t r u c t l i s t h e a d s f i l e s ;
75
76 struct b l o ck dev i c e ∗ s bdev ;
77 // s t r u c t l i s t h e a d s i n s t a n c e s ;
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78 // s t r u c t quo t a i n f o s dquo t ; /∗ Diskquota s p e c i f i c
op t i ons ∗/

79
80 char s i d [ 3 2 ] ; /∗ In fo rmat iona l

name ∗/
81
82 // s t r u c t k o b j e c t kob j ; /∗ anchor f o r s y s f s

∗/
83 void ∗ s f s i n f o ; /∗ Fi l e sy s t em

p r i v a t e i n f o ∗/
84
85 /∗
86 ∗ The next f i e l d i s f o r VFS ∗ on ly ∗ . No f i l e s y s t em s have

any bu s i n e s s
87 ∗ even l o o k i n g at i t . You had been warned .
88 ∗/
89 // s t r u c t semaphore s v f s rename sem ; /∗ Kludge ∗/
90 } ;
91
92 /∗
93 bh s t a t e−b i t s
94 −−−−−−−−−−−−−
95 s t r a i g h t from inc l ud e / l i nux / bu f f e r h ead . h ( k e rne l 2 . 5 . 6 9 )
96 ∗/
97 enum bh s t a t e b i t s {
98 BH Uptodate , /∗ Contains v a l i d data ∗/
99 BH Dirty , /∗ I s d i r t y ∗/

100 BH Lock , /∗ I s l o cked ∗/
101 BH Req , /∗ Has been submi t ted f o r I /O ∗/
102
103 BH Mapped , /∗ Has a d i s k mapping ∗/
104 BH New , /∗ Disk mapping was newly c rea t ed by g e t b l o c k

∗/
105 BH Async Read , /∗ I s under end bu f f e r a s ync r ead I /O ∗/
106 BH Async Write , /∗ I s under e n d b u f f e r a s y n c w r i t e I /O ∗/
107 BH Delay , /∗ Buf fer i s not ye t a l l o c a t e d on d i s k ∗/
108
109 BH Boundary , /∗ Block i s f o l l owed by a d i s c o n t i g u i t y ∗/
110 BH PrivateStart , /∗ not a s t a t e b i t , bu t the f i r s t b i t a v a i l a b l e
111 ∗ f o r p r i v a t e a l l o c a t i o n by o the r e n t i t i e s
112 ∗/
113 } ;
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114
115 /∗
116 bu f f e r h ead
117 −−−−−−−−−−−
118 s t r a i g h t from inc l ud e / l i nux / bu f f e r h ead . h ( k e rne l 2 . 5 . 6 9 )
119 We’ ve comment out t h i n g s we don ’ t r e a l l y care too much about .
120 $Id : b l o c k d e v . h , v 1 .13 2003/10/01 05 :42 :06 s t ewar t Exp $

121 ∗/
122 struct bu f f e r head {
123
124 unsigned long b s t a t e ; /∗ b u f f e r s t a t e bitmap ( see

above ) ∗/
125 atomic t b count ; /∗ user s us ing t h i s b l o c k ∗/
126 struct bu f f e r head ∗ b th i s pag e ; /∗ c i r c u l a r l i s t o f page ’ s

b u f f e r s ∗/
127 // s t r u c t page ∗ b page ; /∗ the page t h i s bh i s

mapped to ∗/
128
129 s e c t o r t b b locknr ; /∗ b l o c k number ∗/
130 u32 b s i z e ; /∗ b l o c k s i z e ∗/
131 char ∗ b data ; /∗ po in t e r to data b l o c k ∗/
132
133 struct b l o ck dev i c e ∗ b bdev ;
134 // b h en d i o t ∗ b end i o ; /∗ I /O comple t ion ∗/
135 // vo id ∗ b p r i v a t e ; /∗ r e se rved f o r b end i o ∗/
136 // s t r u c t l i s t h e a d b a s s o c b u f f e r s ; / ∗ a s s o c i a t e d wi th

another mapping ∗/
137 } ;
138
139 /∗
140 Macro t r i c k s to exapnd the s e t b u f f e r f o o ( ) , c l e a r b u f f e r f o o ( )
141 and b u f f e r f o o ( ) f unc t i on s
142 ∗/
143 #define BUFFER FNS( bi t , name) \
144 stat ic i n l i n e void s e t b u f f e r ##name( struct bu f f e r head ∗bh) \
145 { \
146 s e t b i t (BH ##bit , &( bh)−>b s t a t e ) ;\
147 } \
148 stat ic i n l i n e void c l e a r b u f f e r ##name( struct bu f f e r head ∗bh) \
149 { \
150 c l e a r b i t (BH ##bit , &( bh)−>b s t a t e ) ; \
151 } \
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152 stat ic i n l i n e int bu f f e r ##name( struct bu f f e r head ∗bh) \
153 { \
154 return t e s t b i t (BH ##bit , &(bh)−>b s t a t e ) ; \
155 }
156
157 /∗
158 t e s t s e t b u f f e r f o o ( ) and t e s t c l e a r b u f f e r f o o ( )
159 ∗/
160 #define TAS BUFFER FNS( bi t , name) \
161 stat ic i n l i n e int t e s t s e t b u f f e r ##name( struct bu f f e r head ∗bh)

\
162 { \
163 return t e s t a n d s e t b i t (BH ##bit , &(bh)−>b s t a t e ) ; \
164 } \
165 stat ic i n l i n e int t e s t c l e a r b u f f e r ##name( struct bu f f e r head ∗bh

) \
166 { \
167 return t e s t a n d c l e a r b i t (BH ##bit , &( bh)−>b s t a t e ) ; \
168 }
169
170 /∗
171 Emit the b u f f e r b i t o p s f unc t i on s .
172 ∗/
173 BUFFER FNS( Uptodate , uptodate )
174 BUFFER FNS( Dirty , d i r t y )
175 TAS BUFFER FNS( Dirty , d i r t y )
176 BUFFER FNS(Lock , locked )
177 TAS BUFFER FNS(Lock , locked )
178 BUFFER FNS(Req , req )
179 BUFFER FNS(Mapped , mapped)
180 BUFFER FNS(New, new)
181 BUFFER FNS( Async Read , async read )
182 BUFFER FNS( Async Write , a sync wr i t e )
183 BUFFER FNS( Delay , de lay )
184 BUFFER FNS(Boundary , boundary )
185
186
187
188 /∗
189 f o r submi t bh
190 ∗/
191 #define READ 1
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192 #define WRITE 2
193
194 /∗
195 our func t i on d e f i n i t i o n s . Mostly g l u e .
196 ∗/
197 int block dev new ( struct b l o ck dev i c e ∗ b , const char ∗ f i l e , u64

b l o ck s i z e , u64 num blocks ) ;
198 int b l o c k d e v c l o s e ( struct b l o ck dev i c e ∗b) ;
199
200 struct bu f f e r head ∗bnew( struct b l o ck dev i c e ∗b , s e c t o r t block ,

int s i z e ) ;
201
202 /∗
203 f unc t i on d e f i n i t i o n s p r e t t y much s t r a i g h t out o f i n c l u d e / l i nux /

b l ock head . h
204 ∗/
205 struct bu f f e r head ∗ bread ( struct b l o ck dev i c e ∗b , s e c t o r t block

, int s i z e ) ;
206
207 /∗
208 reads b l o c k as per super b l o c k i n f o
209 ∗/
210 stat ic i n l i n e struct bu f f e r head ∗
211 sb bread ( struct supe r b lo ck ∗ sb , s e c t o r t b lock )
212 {
213 return bread ( sb−>s bdev , block , sb−>s b l o c k s i z e ) ;
214 }
215
216 void b l o c k d e v i n i t ( ) ;
217
218 void submit bh ( int rw , struct bu f f e r head ∗ bh) ;
219
220 #endif
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Listing 5: testkit/block dev.c

1 /∗
2 b l o c k d e v . c
3 −−−−−−−−−−−
4 $Id : b l o c k d e v . c , v 1 .15 2003/10/01 05 :41 :57 s t ewar t Exp $

5 (C) 2003 Stewart Smith
6 Di s t r i b u t e d under the GNU Pub l i c License
7
8 Some data s t r u c t u r e s have been cons t ruc t ed out o f t ho se
9 pre sen t in the Linux Kernel ( v2 . 5 . 6 9 ) . They are copy r i g h t

10 o f t h e i r r e s p e c t i v e owners .
11 ∗/
12
13 #define GNU SOURCE
14
15 #include < s t d i o . h>
16 #include < s t d l i b . h>
17 #include < sys / types . h>
18 #include < sys / s t a t . h>
19 #include < f c n t l . h>
20 #include <unis td . h>
21
22 #include ” b lock dev . h”
23 #include < g l i b . h>
24
25
26
27 GList ∗ l r u l i s t ;
28 GHashTable ∗ blk hash ;
29
30 /∗ hash bh
31 −−−−−−−
32 Hashes a b u f f e r head . Poor hash funct ion , but
33 okay f o r our purposes as we g en e r a l l y on ly
34 use one b l o c k dev i ce a t once in s imu la t i on .
35
36 Used wi th the Gl ib hash .
37 ∗/
38 gu int hash bh ( gcons tpo in t e r a )
39 {
40 struct bu f f e r head ∗bh = ( struct bu f f e r head ∗) a ;



90

41 return ( bh−>b bdev−>f i l e o n d i s k % 32768)+(bh−>b blocknr
% 32768) ;

42 }
43
44 /∗ bh e qua l
45 −−−−−−−−
46 t rue i f the con ten t s o f two b u f f e r heads are
47 the same ( i . e . dev ice , b l o c k number and b l o c k s i z e )
48 ∗/
49 g in t bh equal ( gcons tpo in t e r a , g cons tpo in t e r b)
50 {
51 struct bu f f e r head ∗bha ,∗ bhb ;
52 bha = ( struct bu f f e r head ∗) a ;
53 bhb = ( struct bu f f e r head ∗) b ;
54
55 i f ( bha==NULL | | bhb==NULL)
56 return 0 ;
57
58 return ( bha−>b bdev == bhb−>b bdev
59 && bha−>b blocknr==bhb−>b blocknr
60 && bha−>b s i z e == bhb−>b s i z e
61 ) ;
62 }
63
64 /∗ b l o c k d e v i n i t
65 −−−−−−−−−−−−−−
66
67 I n i t i a l i z e s the b l o c k dev i ce s imu la to r .
68
69 Should be c a l l e d b e f o r e any o the r func t i on .
70 On f a i l u r e , abor t s
71 ∗/
72 void b l o c k d e v i n i t ( )
73 {
74 l r u l i s t = NULL;
75 i f ( ( b lk hash = g hash tab le new ( hash bh , bh equal ) )==NULL)
76 { f p r i n t f ( s tde r r , ” Fa i l ed to c r e a t e b lk hash \n” ) ; abort ( ) ;}
77 }
78
79 /∗ b l ock dev new
80 −−−−−−−−−−−−−
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81 F i l l s out the b l o c k d e v i c e s t r u c t u r e . doesn ’ t a l l o c a t e memory
f o r i t .

82
83 On f a i l u r e o f opening teh dev ice , abor t s .
84 ∗/
85 int block dev new ( struct b l o ck dev i c e ∗b , const char ∗ f i l e , u64

b l o ck s i z e , u64 num blocks )
86 {
87 i f ( ( b−>f i l e o n d i s k=open ( f i l e ,ORDWR|O CREAT, S IRUSR |S IWUSR) )

< 0)
88 {
89 f p r i n t f ( s tde r r , ”Unable to open dev i c e f i l e %s\n” , f i l e ) ;
90 abort ( ) ;
91 }
92 b−>b l o c k s i z e = b l o c k s i z e ;
93 b−>num blocks = num blocks ;
94 b−>name = f i l e ;
95
96 b−>c a ch e h i t = 0 ;
97 b−>c a c h e h i t c l e a r = 0 ;
98 b−>cache miss = 0 ;
99 b−>c a c h e m i s s c l e a r = 0 ;

100
101 return 1 ;
102 }
103
104 /∗ b l o c k d e v c l o s e
105 −−−−−−−−−−−−−−−
106 Closes our s imula ted b l o c k dev i ce . Warns i f any d i r t y b u f f e r s
107 removes b u f f e r s from the b u f f e r cache .
108 ∗/
109 int b l o c k d e v c l o s e ( struct b l o ck dev i c e ∗b)
110 {
111 struct bu f f e r head ∗ bh ;
112
113 i f ( g l i s t f i r s t ( l r u l i s t ) )
114 {
115 bh = ( struct bu f f e r head ∗) ( g l i s t f i r s t ( l r u l i s t )−>data ) ;
116 do
117 {
118 i f (bh−>b bdev == b) /∗ Our b l o c k dev i ce ∗/
119 {
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120 i f ( b u f f e r d i r t y (bh) ) /∗ Destroy ing wi thout
f l u s h ∗/

121 f p r i n t f ( s tde r r , /∗ So we warn ∗/
122 ” b l o c k d e v c l o s e : bdev has Dirty bu f f e r s

(%x) \n” ,
123 bh−>b blocknr ) ;
124 g hash tab le remove ( blk hash , bh) ;
125 l r u l i s t = g l i s t r emov e ( l r u l i s t , bh) ;
126 f p r i n t f ( s tde r r , ”Removing b lock from cache 0 x%08 l l x \

n” ,bh−>b blocknr ) ;
127 }
128 else
129 f p r i n t f ( s tde r r , ”bh−>b dev = %p not %p\n” ,bh−>b bdev , b

) ;
130 i f ( g l i s t f i r s t ( l r u l i s t ) )
131 bh = ( struct bu f f e r head ∗) g l i s t f i r s t ( l r u l i s t )−>

data ;
132 else
133 bh = NULL;
134 }while ( bh!=NULL) ;
135 }
136 f p r i n t f ( s tde r r , ”Closed Block Device : % s \n” ,b−>name) ;
137 f p r i n t f ( s tde r r , ”%s Sta t s :\n\ t%l l d h i t \n\ t%l l d miss \n\n\ t%l l d

Clear Hit \n\ t%l l d Clear Miss\n” ,b−>name , b−>cache h i t , b−>

cache miss , b−>c a c h e h i t c l e a r , b−>c a c h e m i s s c l e a r ) ;
138 }
139
140 struct bu f f e r head ∗ bread ( struct b l o ck dev i c e ∗b , s e c t o r t block

, int s i z e )
141 {
142 struct bu f f e r head ∗bh , ∗ bh2 ;
143 int i ;
144
145 #ifdef DEBUG VERBOSE
146 f p r i n t f ( s tde r r , ”Attempting to get b lock 0 x%l l x \ t ” , b lock ) ;
147 #endif
148
149 i f ( b lock >= b−>num blocks )
150 {
151 f p r i n t f ( s tde r r , ” b lock out o f dev i c e range . b=%d\n” , b lock ) ;
152 return NULL;
153 }
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154
155 i f ( ( bh = ( struct bu f f e r head ∗) mal loc ( s izeof ( struct bu f f e r head

) ) )==NULL)
156 {
157 f p r i n t f ( s tde r r , ”Cannot a l l o c a t e s t ru c t bu f f e r head \n” ) ;
158 abort ( ) ;
159 }
160 bh−>b blocknr = block ;
161 bh−>b s i z e = s i z e ;
162 bh−>b bdev = b ;
163
164 i f ( ( bh2 = g hash tab l e l ookup ( blk hash , bh) ) !=NULL)
165 {
166 // f p r i n t f ( s t de r r ,” Found b l o c k in cache 0 x%l l x a t 0 x%x\n” ,

b lock , hash bh ( bh2 ) ) ;
167 f r e e (bh) ;
168 l r u l i s t = g l i s t r emov e ( l r u l i s t , bh2 ) ;
169 l r u l i s t = g l i s t append ( l r u l i s t , bh2 ) ;
170 b−>c a ch e h i t++;
171 return bh2 ;
172 }
173
174 bh−>b s t a t e =0;
175 bh−>b count=0;
176
177 i f ( ( bh−>b data = ( char ∗) mal loc ( s izeof ( char ) ∗ s i z e ) )==NULL)
178 {
179 f p r i n t f ( s tde r r , ”Unable to A l l o ca t e data bu f f e r \n” ) ;
180 abort ( ) ;
181 }
182
183 l s e e k (b−>f i l e o n d i s k , b−>b l o c k s i z e ∗block , SEEK SET) ;
184 i f ( ( i =(read (b−>f i l e o n d i s k , bh−>b data , ( s i z e t ) s i z e ) != s i z e ) ) )
185 {
186 f p r i n t f ( s tde r r , ”An unexpected number o f bytes was read : %d\

n\n” , i ) ;
187 abort ( ) ;
188 }
189
190 l r u l i s t = g l i s t append ( l r u l i s t , bh) ;
191 i f ( g hash tab l e l ookup ( blk hash , bh) !=NULL && ! bh equal (

g hash tab l e l ookup ( blk hash , bh) , bh) )
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192 f p r i n t f ( s tde r r , ”HASH COLLISION ! ! ! ! ! \ n\n” ) ;
193 g h a s h t a b l e i n s e r t ( blk hash , bh , bh) ;
194 #ifdef DEBUG VERBOSE
195 f p r i n t f ( s tde r r , ” b l o ck s read : %d , hash s i z e : %d hashed as : 0 x%x\

n” , g l i s t l e n g t h ( l r u l i s t ) , g h a s h t a b l e s i z e ( b lk hash ) ,
hash bh (bh) ) ;

196 #endif
197
198 b−>cache miss++;
199
200 return bh ;
201 }
202
203 struct bu f f e r head ∗bnew( struct b l o ck dev i c e ∗b , s e c t o r t block ,

int s i z e )
204 {
205 struct bu f f e r head ∗bh , ∗ bh2 ;
206 int i ;
207
208 #ifdef DEBUG VERBOSE
209 f p r i n t f ( s tde r r , ”Attempting to get b lock 0 x%l l x \ t ” , b lock ) ;
210 #endif
211
212 i f ( b lock >= b−>num blocks )
213 {
214 f p r i n t f ( s tde r r , ” b lock out o f dev i c e range . b=%d\n” , b lock ) ;
215 return NULL;
216 }
217
218 i f ( ( bh = ( struct bu f f e r head ∗) mal loc ( s izeof ( struct bu f f e r head

) ) )==NULL)
219 {
220 f p r i n t f ( s tde r r , ”Cannot a l l o c a t e s t ru c t bu f f e r head \n” ) ;
221 abort ( ) ;
222 }
223 bh−>b blocknr = block ;
224 bh−>b s i z e = s i z e ;
225 bh−>b bdev = b ;
226
227 i f ( ( bh2 = g hash tab l e l ookup ( blk hash , bh) ) !=NULL)
228 {
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229 // f p r i n t f ( s t de r r ,” Found b l o c k in cache 0 x%l l x a t 0 x%x\n” ,
b lock , hash bh ( bh2 ) ) ;

230 f r e e (bh) ;
231 l r u l i s t = g l i s t r emov e ( l r u l i s t , bh2 ) ;
232 l r u l i s t = g l i s t append ( l r u l i s t , bh2 ) ;
233 memset ( bh2−>b data , 0 , s i z e ) ;
234 b−>c a c h e h i t c l e a r++;
235 return bh2 ;
236 }
237
238 bh−>b s t a t e =0;
239 bh−>b count=0;
240
241 i f ( ( bh−>b data = ( char ∗) mal loc ( s izeof ( char ) ∗ s i z e ) )==NULL)
242 {
243 f p r i n t f ( s tde r r , ”Unable to A l l o ca t e data bu f f e r \n” ) ;
244 abort ( ) ;
245 }
246
247 memset (bh−>b data , 0 , s i z e ) ;
248
249 l r u l i s t = g l i s t append ( l r u l i s t , bh) ;
250 i f ( g hash tab l e l ookup ( blk hash , bh) !=NULL && ! bh equal (

g hash tab l e l ookup ( blk hash , bh) , bh) )
251 f p r i n t f ( s tde r r , ”HASH COLLISION ! ! ! ! ! \ n\n” ) ;
252 g h a s h t a b l e i n s e r t ( blk hash , bh , bh) ;
253 #ifdef DEBUG VERBOSE
254 f p r i n t f ( s tde r r , ” b l o ck s read : %d , hash s i z e : %d hashed as : 0 x%x\

n” , g l i s t l e n g t h ( l r u l i s t ) , g h a s h t a b l e s i z e ( b lk hash ) ,
hash bh (bh) ) ;

255 #endif
256
257 b−>c a c h e m i s s c l e a r++;
258
259 return bh ;
260 }
261
262 void submit bh ( int rw , struct bu f f e r head ∗ bh)
263 {
264 int r e s u l t ;
265
266 switch ( rw)
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267 {
268 case READ:
269 break ;
270
271 case WRITE:
272 i f ( ! b u f f e r d i r t y (bh) )
273 f p r i n t f ( s tde r r , ”Warning : Non d i r t y bu f f e r be ing wr i t t en .\

n” ) ;
274 #ifdef DEBUG VERBOSE
275 f p r i n t f ( s tde r r , ”−−−BLOCK WRITE−−−%d % l l d \n” ,bh−>b s i z e , bh

−>b blocknr ) ;
276 #endif
277 l s e e k (bh−>b bdev−>f i l e o n d i s k , bh−>b s i z e ∗bh−>b blocknr ,

SEEK SET) ;
278 r e s u l t = wr i t e (bh−>b bdev−>f i l e o n d i s k , bh−>b data , bh−>

b s i z e ) ;
279 i f ( r e s u l t <= 0)
280 { f p r i n t f ( s tde r r , ” Error Writing Block , r e s u l t = %d\n” ,

r e s u l t ) ;}
281 c l e a r b u f f e r d i r t y (bh) ;
282 fdatasync (bh−>b bdev−>f i l e o n d i s k ) ;
283 break ;
284 default :
285 f p r i n t f ( s tde r r , ” I nva l i d mode to submit bh ( mode=%x) \n” , rw) ;
286 abort ( ) ;
287 break ;
288 } ;
289 }
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Listing 6: testkit/blktest.c

1 /∗
2 b l k t e s t . c
3 −−−−−−−−−
4 Test d r i v e r f o r the b l o c k dev i ce s imu la to r .
5
6 $Id : b l k t e s t . c , v 1 .3 2003/07/06 12 :28 :03 s t ewar t Exp $

7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GNU Pub l i c License

10 ∗/
11
12 #include ” b lock dev . h”
13 #include < s t d i o . h>
14 #include < s t d l i b . h>
15 #include <unis td . h>
16
17 int main ( int argc , char ∗ argv [ ] )
18 {
19 struct b l o ck dev i c e b ;
20 struct bu f f e r head ∗ bh ;
21 int a ;
22 int i ;
23 int bs i z e = a to i ( argv [ 2 ] ) ;
24
25 i f ( argc <3)
26 {
27 f p r i n t f ( s tde r r , ”Usage :\n\ t . / b l k t e s t dev i c e b l o c k s i z e

blockcount \n\n” ) ;
28 e x i t ( 0 ) ;
29 }
30
31 b l o c k d e v i n i t ( ) ;
32 block dev new(&b , argv [ 1 ] , a t o i ( argv [ 2 ] ) , a t o i ( argv [ 3 ] ) ) ;
33
34 for ( i =0; i<a t o i ( argv [ 3 ] ) /2 ; i++)
35 {
36 bh = bread(&b , i , a t o i ( argv [ 2 ] ) ) ;
37 a = wr i t e (STDOUT FILENO, bh−>b data , bh−>b s i z e ) ;
38 }
39
40 for ( i=a t o i ( argv [ 3 ] ) /4 ; i<a t o i ( argv [ 3 ] ) /2 ; i++)
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41 {
42 bh = bread(&b , i , a t o i ( argv [ 2 ] ) ) ;
43 a = wr i t e (STDOUT FILENO, bh−>b data , bh−>b s i z e ) ;
44 }
45
46 for ( i =0; i<a t o i ( argv [ 3 ] ) ; i++)
47 {
48 bh = bread(&b , i , a t o i ( argv [ 2 ] ) ) ;
49 a = wr i t e (STDOUT FILENO, bh−>b data , bh−>b s i z e ) ;
50 }
51
52 for ( i=a t o i ( argv [ 3 ] ) /4 ; i<a t o i ( argv [ 3 ] ) /2 ; i++)
53 {
54 bh = bread(&b , i , a t o i ( argv [ 2 ] ) ) ;
55 a = wr i t e (STDOUT FILENO, bh−>b data , bh−>b s i z e ) ;
56 }
57
58 bh = bread(&b , 0 , b s i z e ) ;
59 s e t b u f f e r d i r t y (bh) ;
60 s t r cpy (bh−>b data , ”Shut your fuck ing face , Uncle Fucker . ” ) ;
61 submit bh (WRITE, bh) ;
62
63 return 0 ;
64 }
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.3 FCFS Source

Listing 7: fcfs/Makefile

1 #
2 # Makef i l e for FCFS
3 #−−−−−−−−−−−−−−−−−
4 # $Id : Makef i le , v 1 . 1 4 2003/10/2 9 04 : 1 9 : 3 3 stewart Exp $
5 #
6 # (C) 2003 Stewart Smith
7 # Dis t r ibuted under the GNU Publ ic L i c ense
8 #
9

10 CC:=gcc
11 CFLAGS:=−g −Wall −pg − f p r o f i l e −arc s
12 GLIB CFLAGS = ‘ g l ib−c on f i g −− c f l a g s g l ib ‘
13 GLIB LIB = ‘ g l ib−c on f i g −− l i b s g l i b ‘
14
15 LIBTOOL:=ar r
16
17 .PHONY: c l ean doc
18
19 a l l : mkfs v o l i n f o mkf i l e f c f s n ewob j f c f s r e a d o b j f c f s upda t e ob j
20
21 mkfs : mkfs . o t e s t k i t / t e s t k i t . o f c f s . a
22 $ (CC) −o $@ $ ˆ $ (GLIB CFLAGS) $ (GLIB LIB)
23
24 v o l i n f o : v o l i n f o . o t e s t k i t / t e s t k i t . o f c f s . a
25 $ (CC) −o $@ $ ˆ $ (GLIB CFLAGS) $ (GLIB LIB) $ (CFLAGS)
26
27 f c f s n ewob j : f c f s n ewob j . o mount t e s tk i t . o f c f s . a t e s t k i t / t e s t k i t

. o
28 $ (CC) −o $@ $ ˆ $ (GLIB CFLAGS) $ (GLIB LIB) $ (CFLAGS)
29
30 f c f s r e a d o b j : f c f s r e a d o b j . o mount t e s tk i t . o f c f s . a t e s t k i t /

t e s t k i t . o
31 $ (CC) −o $@ $ ˆ $ (GLIB CFLAGS) $ (GLIB LIB) $ (CFLAGS)
32
33 f c f s upda t e ob j : f c f s u pda t e ob j . o mount t e s tk i t . o f c f s . a t e s t k i t /

t e s t k i t . o
34 $ (CC) −o $@ $ ˆ $ (GLIB CFLAGS) $ (GLIB LIB) $ (CFLAGS)
35
36 f c f s . a : space bitmap . o d i sk . o onode . o onode index . o supe r b lo ck . o
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37 $ (LIBTOOL) $@ $ˆ
38
39 mkf i l e : mk f i l e . c
40 $ (CC) −o $@ $ ˆ $ (CFLAGS)
41
42 ###############
43 # Documentation
44 ###############
45
46 doc :
47 rm − r f doc/html ; mkdir doc/html
48 rm − r f doc/ l a t e x ; mkdir doc/ l a t e x
49 cx r e f ∗ . c ∗ . h t e s t k i t /∗ . c t e s t k i t /∗ . h − xre f−a l l − index−

a l l −html32−s r c −I . − I t e s t k i t / $ (GLIB CFLAGS) −Odoc/
html − a l l −comments

50 c x r e f ∗ . c ∗ . h t e s t k i t /∗ . c t e s t k i t /∗ . h − xre f−a l l − index−
a l l − I . − I t e s t k i t / $ (GLIB CFLAGS) −Odoc/ l a t e x − l a t e x 2 e

51
52 #################
53 #
54 # And now . . . . C f i l e compi la t ion ( yay )
55 #
56 #################
57
58 f c f s n ewo b j . o : f c f s n ewo b j . c
59 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
60
61 f c f s r e a d o b j . o : f c f s r e a d o b j . c
62 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
63
64 f c f s u p d a t e o b j . o : f c f s u p d a t e o b j . c
65 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
66
67 moun t t e s t k i t . o : moun t t e s t k i t . c
68 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
69
70 v o l i n f o . o : v o l i n f o . c
71 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
72
73 mkfs . o : mkfs . c
74 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
75
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76 onode . o : onode . c
77 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
78
79 onode index . o : onode index . c
80 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
81
82 space b i tmap . o : space b i tmap . c
83 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
84
85 s up e r b l o c k . o : s up e r b l o c k . c
86 $ (CC) −c $< $ (CFLAGS) $ (GLIB CFLAGS)
87
88 d i s k . o : d i s k t e s t k i t . c
89 $ (CC) −c $< −o $@ $ (CFLAGS) $ (GLIB CFLAGS)
90
91
92 ##############
93 # clean t a r g e t
94 ##############
95
96 c lean :
97 rm − f mkfs v o l i n f o mk f i l e f c f s n ewo b j f c f s r e a d o b j

f c f s u p d a t e o b j
98 rm − f f c f s . a
99 rm − f mkfs . o space b i tmap . o d i s k . o onode . o onode index . o

v o l i n f o . o supe r b l o c k . o f c f s n ewo b j . o moun t t e s t k i t . o
f c f s r e a d o b j . o

100
101
102
103 ################
104 # TESTING
105 ################
106
107 t e s tmk f s : mkfs
108 . / mk f i l e t e s t 4096 10240
109 . / mkfs t e s t 4096 10240 b l e r g h
110
111 hexdump :
112 hexdump −C t e s t
113
114 t e s t v o l i n f o : v o l i n f o t e s tmk f s
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115 . / v o l i n f o t e s t 4096 10240
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Listing 8: fcfs/disk.h

1 /∗ d i s k . h
2 −−−−−−
3
4 FCFS Disk a b s t r a c t i o n .
5
6 $Id : d i s k . h , v 1 .7 2003/10/20 07 :18 :11 s t ewar t Exp $

7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GNU Pub l i c License

10 ∗/
11
12 #ifndef DISK H
13 #define DISK H
14
15 #include ” t e s t k i t / b lock dev . h”
16 #include ” t e s t k i t / types . h”
17
18 struct f c f s d i s k {
19 s e c t o r t b l o ck snr ; /∗ number o f b l o c k s ∗/
20 u32 b s i z e ; /∗ S i ze o f b l o c k s ∗/
21 struct f c f s d i s k b l o c k ∗ sb b lock ;
22 struct f c f s s b ∗ sb ; /∗ The Disk SuperBlock ∗/
23 void ∗ o s p r i v a t e ; /∗ Used by OS fo r i t ’ s s t r u c t u r e

∗/
24 } ;
25
26 struct f c f s d i s k b l o c k {
27 s e c t o r t b locknr ; /∗ Number o f b l o c k ∗/
28 u32 b s i z e ; /∗ S i ze o f b l o c k ∗/
29 char ∗ data ; /∗ Block data ∗/
30 struct f c f s d i s k ∗ d i sk ; /∗ The d i s k the b l o c k i s from ∗/
31 void ∗ o s p r i v a t e ; /∗ The OS data s t r u c t u r e ∗/
32 } ;
33
34 #define BR SECTOR T( disk , br ) ( ( ( d i sk )−>sb−>ag b locksnr ∗ ( br )−>

a l l o c a t i o n g r oup ) + ( br )−>s t a r t )
35
36 struct f c f s d i s k ∗ disk new ( struct b l o ck dev i c e ∗ bdev ) ;
37 struct f c f s d i s k ∗ d i s k f r e e ( struct f c f s d i s k ∗ d i sk ) ;
38
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39 struct f c f s d i s k b l o c k ∗ disk newblock ( struct f c f s d i s k ∗ disk ,
s e c t o r t b lock ) ;

40 struct f c f s d i s k b l o c k ∗ d i s k g e tb l o ck ( struct f c f s d i s k ∗ disk ,
s e c t o r t b lock ) ;

41 // s t a t i c i n l i n e s t r u c t f c f s d i s k b l o c k ∗ d i s k f r e e b l o c k ( s t r u c t
f c f s d i s k b l o c k ∗ b l o c k ) ;

42 // s t a t i c i n l i n e s t r u c t f c f s d i s k b l o c k ∗ d i s k w r i t e b l o c k ( s t r u c t
f c f s d i s k b l o c k ∗ b l o c k ) ;

43
44 /∗ When f i n i s h e d us ing a d i s k b l o c k ∗/
45 stat ic i n l i n e struct f c f s d i s k b l o c k ∗ d i s k f r e e b l o c k ( struct

f c f s d i s k b l o c k ∗ block )
46 {
47 ( ( struct bu f f e r head ∗) ( block−>o s p r i v a t e ) )−>b count−−;
48 return block ;
49 }
50
51 /∗ Write a d i s k b l o c k immediate ly . ∗/
52 stat ic i n l i n e struct f c f s d i s k b l o c k ∗ d i s k wr i t eb l o ck ( struct

f c f s d i s k b l o c k ∗ block )
53 {
54 s e t b u f f e r d i r t y ( ( struct bu f f e r head ∗) block−>o s p r i v a t e ) ;
55 submit bh (WRITE, ( struct bu f f e r head ∗) block−>o s p r i v a t e ) ;
56 return block ;
57 }
58
59
60 #endif
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Listing 9: fcfs/onode.h

1 /∗ onode . h
2 −−−−−−−
3
4 Header f o r O−Node Manipulat ion
5
6 $Id : onode . h , v 1 .9 2003/10/20 07 :18 :11 s t ewar t Exp $

7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GNU Pub l i c License

10 ∗/
11
12 #ifndef ONODE H
13 #define ONODE H
14
15 #include ” t e s t k i t / types . h”
16
17 struct f c f s onode1 ∗ onode1 new ( struct f c f s d i s k ∗ d i sk ) ;
18 struct f c f s onode1 ∗ onode1 f r e e ( struct f c f s onode1 ∗ onode ) ;
19 int onode1 fork new ( struct f c f s d i s k ∗ disk , struct f c f s b l o c k r u n

∗ onode br , u64 fo rk type , u64 content l eng th , void ∗ content ,
int a l l ow i n t e r n a l ) ;

20 int onode1 fork grow ( struct f c f s d i s k ∗ disk , struct
f c f s b l o c k r u n ∗ onode br , int f o rknr , u64 b lock snr ) ;

21
22 u64 onode1 fo rk l eng th ( struct f c f s onode1 ∗ onode , int f o rknr ) ;
23 int onode1 f o r k wr i t e v e r s i on ed ( struct f c f s d i s k ∗ disk , struct

f c f s onode1 ∗ onode , struct f c f s b l o c k r u n ∗ onode br , int
f o rknr , u64 pos , u64 content l eng th , void ∗ content ) ;

24 int onode1 fo rk wr i t e ( struct f c f s d i s k ∗ disk , struct
f c f s b l o c k r u n ∗ onode br , int f o rknr , u64 pos , u64
content l eng th , void ∗ content ) ;

25 u64 onode1 fo rk r ead ( struct f c f s d i s k ∗ disk , struct f c f s onode1 ∗
onode , int f o rknr , u64 pos , u64 content l eng th , void ∗ content ) ;

26 struct f c f s d i s k b l o c k ∗ onode1 fo rk ge tb l o ck ( struct f c f s d i s k ∗
disk , struct f c f s onode1 ∗ onode , int f o rknr , u64 b locknr ) ;

27
28 #endif
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Listing 10: fcfs/onode versioned.h

1 /∗ onode vers ioned . h
2 −−−−−−−−−−−−−−−−−
3
4 Data s t r u c t u r e s f o r ve r s i oned onode fo rk s ,
5 keeps t rack o f the r e v i s i o n l o g .
6
7 $Id : onode vers ioned . h , v 1 .2 2003/10/20 07 :18 :11 s t ewar t Exp $

8
9 (C) 2003 Stewart Smith

10 Di s t r i b u t e d under the GNU GPL
11 ∗/
12
13 #ifndef ONODE VERSIONED H
14 #define ONODE VERSIONED H
15
16 #include ” t e s t k i t / types . h”
17
18 enum f c f s o n od e f o r k r e v op {
19 FCFS ONODE FORK REV REPLACE,
20 FCFS ONODE FORK REV INSERT,
21 FCFS ONODE FORE REV APPEND,
22 FCFS ONODE FORK REV TRUNCATE,
23 FCFS ONODE FORK REV GROW,
24 } ;
25
26 #define FCFS ONODE FORK REV MAGIC1 0 xF0526B76 /∗ 0 xF0 ’R ’ ’ k ’ ’

v ’ ∗/
27
28 struct f c f s o n o d e f o r k r e v {
29 u64 r e v i s i o n ; /∗ Increment f o r each r e v i s i o n ∗/
30 u64 c o n s i s t e n t r e v i s i o n ; /∗ Used to note l a s t c o n s i s t e n t

r e v i s i o n ∗/
31 u64 time ; /∗ Time r e v i s i o n was done ( not

committed ) ∗/
32 u32 ope ra t i on ; /∗ enum f c f s o n o d e f o r k r e v o p ∗/
33 u32 magic1 ; /∗ FCFS ONODE FORK REV MAGIC1 ∗/
34 u64 r e v o f f s e t ; /∗ Of f s e t in r e v i s i o n f o r k ∗/
35 u64 r ev l eng th ; /∗ Length o f r e v i s i o n f o r k data

∗/
36 u64 o f f s e t ; /∗ Of f s e t in r e a l f o r k to app ly

to ∗/



107

37 char space [ 1 6 ] ; /∗ Space f o r f u t u r e r e v i s i o n s ∗/
38 } ;
39
40 #endif
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Listing 11: fcfs/onode index.h

1 /∗ onode index . h
2 −−−−−−−−−−−−−
3 A ca s u a l l y demented B+Tree des igned to s tay ba lanced
4 and be opt imized f o r acce s s from d i s k ( and in−core cache )
5 and not to have to wr i t e l o t s o f t imes .
6
7 Some o f the ideas f o r t h i s came from Reiser4 s t u f f , e xcep t
8 I ’m a l l ow in g unbalanced s t u f f to make i t to d i s k i f needed .
9 I ’m th i n k i n g t ha t i f t h i n g s ge t r e a l l y bad , we can run a

10 t r e e repacker : )
11
12 $Id : onode index . h , v 1 .9 2003/10/20 07 :18 :11 s t ewar t Exp $

13
14 (C) 2003 Stewart Smith
15 Di s t r i b u t e d under the GNU Pub l i c License
16 ∗/
17
18 #ifndef ONODE INDEX H
19 #define ONODE INDEX H
20
21 #include ” t e s t k i t / types . h”
22
23 /∗ In memory r ep r e s en t a t i on o f onode index ∗/
24 struct f c f s onode i ndex {
25 // u64 roo t b l o c kn r ; / ∗ b l o c k run f o r root o f index ∗/
26 struct f c f s onode i ndex node ∗ root ; /∗ the node ∗/
27 struct f c f s d i s k b l o c k ∗ r o o t b l o ck ; /∗ d i s k b l o c k f o r node ∗/
28 struct f c f s d i s k ∗ d i sk ; /∗ d i s k the index i s on ∗/
29 } ;
30
31 #define FCFS ONODE INDEX NODE MAGIC1 0 x4f6e4944784e4445ULL /∗

OnIDxNDE ∗/
32
33 struct f c f s onode i ndex node i t em {
34 u64 key ;
35 u64 node b locknr ;
36 } ;
37
38 struct f c f s onode i ndex node {
39 u64 magic1 ; /∗ FCFS ONODE INDEX NODE MAGIC1

∗/
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40 u64 id ; /∗Not n e c e s s a r i l y unique , used
f o r l o c k i n g ∗/

41 u64 b lock ;
42 u64 used ;
43 struct f c f s onode i ndex node i t em items [ 1 ] ;
44 } ;
45
46 #define FCFS ONODE INDEX LEAF MAGIC1 0 x4f6e4944784c6665ULL /∗

OnIDxLfe ∗/
47
48 struct f c f s o n o d e i n d e x l e a f i t em {
49 u64 key ;
50 u64 onode b locknr ;
51 } ;
52
53 struct f c f s o n o d e i n d e x l e a f {
54 u64 magic1 ; /∗ FCFS ONODE INDEX LEAF MAGIC1

∗/
55 u64 id ; /∗ Not n e c e s s a r i l y unique , used

f o r l o c k i n g ∗/
56 u64 b lock ;
57 u64 used ;
58 struct f c f s o n o d e i n d e x l e a f i t em items [ 1 ] ;
59 } ;
60
61 u64 onode index new id ( struct f c f s onode i ndex ∗ index ) ;
62 struct f c f s onode i ndex ∗ onode index read ( struct f c f s d i s k ∗ d i sk )

;
63 struct f c f s onode i ndex ∗ onode index new ( struct f c f s d i s k ∗ d i sk ) ;
64 int on od e i nd e x w r i t e l e a f ( struct f c f s onode i ndex ∗ index , struct

f c f s o n o d e i n d e x l e a f ∗ l e a f ) ;
65 struct f c f s d i s k b l o c k ∗ onode index new node ( struct

f c f s onode i ndex ∗ index ) ;
66 struct f c f s o n o d e i n d e x l e a f ∗ onode index l ea f new ( struct

f c f s onode i ndex ∗ index , struct f c f s onode i ndex node ∗ parent
, int po s i t i o n ) ;

67 struct f c f s onode i ndex node ∗ onode index read node ( struct
f c f s onode i ndex ∗ index , u64 b locknr ) ;

68 int onode index f r e e node ( struct f c f s onode i ndex ∗ index , struct
f c f s onode i ndex node ∗ node ) ;

69 int onode index wr i t e node ( struct f c f s onode i ndex ∗ index , struct
f c f s onode i ndex node ∗ node ) ;
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70
71 int onode index new root ( struct f c f s onode i ndex ∗ index ) ;
72 int on od e i nd e x l e a f i n s e r t ( struct f c f s d i s k ∗ disk , struct

f c f s o n o d e i n d e x l e a f ∗ l e a f , u64 key , u64 va lue ) ;
73 struct f c f s b l o c k r u n ∗ onode i ndex i n s e r t ( struct f c f s onode i ndex

∗ index , struct f c f s onode1 ∗ onode ) ;
74 struct f c f s d i s k b l o c k ∗ onode index lookup ( struct

f c f s onode i ndex ∗ index , struct f c f s b l o c k r u n ∗ onode br , u64
id ) ;

75 struct f c f s onode i ndex ∗ onode index de l e t e ( struct
f c f s onode i ndex ∗ index ) ;

76
77 #endif
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Listing 12: fcfs/space bitmap.h

1 /∗ space b i tmap . h
2 −−−−−−−−−−−−−−
3
4 Header f i l e f o r the bitmap b l o c k a l l o c a t o r
5
6 $Id : space b i tmap . h , v 1 .3 2003/10/20 07 :18 :11 s t ewar t Exp $

7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GNU Pub l i c License

10 ∗/
11
12 #ifndef SPACE BITMAP H
13 #define SPACE BITMAP H
14
15 #include ” t e s t k i t / types . h”
16
17 #define BLOCK AG( disk , b lock ) ( b lock /disk−>sb−>ag b locksnr )
18
19 u32 space b i tmap s i z e ( struct f c f s s b ∗ sb , int ag ) ;
20 int spa c e b i tmap a l l o c a t e b l o ck ( struct f c f s d i s k ∗ disk , u32

a l l o c a t i on g r oup , u32 b lock ) ;
21 struct f c f s b l o c k r u n ∗ a g a l l o c a t e b l o c k ( struct f c f s d i s k ∗ disk ,

u32 a l l o c a t i on g r oup , u32 near , u32 b lock snr ) ;
22 int a g b l o c k f r e e ( struct f c f s d i s k ∗ disk , u32 a l l o c a t i on g r oup ,

u32 b lock ) ;
23
24 #endif
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Listing 13: fcfs/super block.h

1 /∗
2 s up e r b l o c k . h
3 −−−−−−−−−−−−−
4 $Id : s up e r b l o c k . h , v 1 .13 2003/10/20 07 :18 :11 s t ewar t Exp $

5
6 Part o f the FCFS o b j e c t s t o r e .
7
8 This f i l e d e s c r i b e s the super b l o c k and r e l a t e d data s t r u c t u r e s .
9

10 (C) 2003 Stewart Smith
11 Di s t r i b u t e d under the GNU Pub l i c License
12 ∗/
13 #ifndef FCFS SUPER BLOCK H
14 #define FCFS SUPER BLOCK H
15
16 #include ” d i sk . h”
17
18 /∗ f c f s b l o c k r u n
19 −−−−−−−−−−−−−−
20 We have a max o f ˜4 b i l l i o n a l l o c t i o n groups ,
21 wi th in these , we can have up to 4 b i l l i o n b l o c k s .
22 and we can address t h e s e wi th ∗ one ∗ b l ock run s t r u c t u r e .
23 This means we don ’ t have a l o t o f b l o c k address lookup on

l a r g e f i l e s
24 or cont iguous f i l e s . Should l ead to f a s t IO . . .
25 ∗/
26 struct f c f s b l o c k r u n {
27 u32 a l l o c a t i o n g r oup ; /∗ Al l o ca t i on group ∗/
28 u32 s t a r t ; /∗ S t a r t Block ∗/
29 u32 l en ; /∗ Length ( b l o c k s ) ∗/
30 } ;
31
32 #define FCFS SB MAGIC1 0x46436673 /∗ FCFS ∗/
33 #define FCFS SB VERSION1 0 x00010001 /∗ V1 SB , V1 FS ∗/
34 #define FCFS SB BITS 0x00000040 /∗ We’ re 64 b i t − but cou ld

be b i g g e r . . . ∗/
35
36 #define FCFS NAME LENGTH 128 /∗ Human Readable Name ∗/
37 #define FCFS SB MAGIC2 0 x3f8ec2a1 /∗ There i s no meaning , j u s t

weird num ∗/
38
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39 enum f c f s s b f l a g s {
40 FCFS FLAG SBLocation1 , /∗ Three f l a g s make number ∗/
41 FCFS FLAG SBLocation2 , /∗ see : enum f c f s s b l o c a t i o n ∗/
42 FCFS FLAG SBLocation3 ,
43 FCFS FLAG Dirty , /∗ Was unc l ean l y unmounted∗/
44 FCFS FLAG Experimental , /∗ Has been wr i t t en by

exper imenta l code ∗/
45 FCFS FLAG JournalMeta , /∗ Journal meta−data ∗/
46 FCFS FLAG JournalData , /∗ Journal a l l data wr i t e s ∗/
47 FCFS FLAG Versioned , /∗ I s ve r s i oned system ∗/
48 } ;
49
50 enum f c f s s b l o c a t i o n {
51 FCFS SBloc start volume , /∗ S t a r t o f volume ∗/
52 FCFS SBloc start ag , /∗ S t a r t o f a l l o c a t i o n group ∗/
53 FCFS SBloc end volume /∗ Fina l b l o c k o f volume ∗/
54 } ;
55
56 struct f c f s s b {
57 u32 magic1 ; // f i r s t magic number .
58 u32 ve r s i on ; // ver s i on o f FS
59 u32 b i t s ; // number o f b i t s to use as a ’ base ’ b i t s . ( 6 4

d e f a u l t )
60 u32 sb length ; // l en g t h o f sb ( b y t e s )
61
62 u64 f l a g s ;
63
64 u32 b s i z e ; // b l o c k s i z e ( b y t e s )
65 u64 b locksnr ; // number o f b l o c k s
66
67
68 char name [FCFS NAME LENGTH ] ; // human readab l e name o f volume
69 u32 magic2 ; // magic2
70
71 u32 a l l o c a t i o n g r oup s n r ; /∗ Number o f a l l o c t i o n groups on

volume ∗/
72 u32 ag b locksnr ; /∗ Blocks per a l l o c a t i o n group ∗/
73
74 u64 num mounts ; /∗ Number o f s u c c e s s f u l read /

wr i t e mounts ∗/
75 u64 num dirtymounts ; /∗ Num d i r t y mounts ∗/
76 u64 t ime c r ea t ed ; /∗ Time volume crea t ed ∗/
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77 u64 t ime c l ean ; /∗ Time volume l a s t unmounted
c l e a n l y ∗/

78 u64 t ime dirtymount ; /∗ Time volume l a s t mounted d i r t y
∗/

79
80 u64 onode index b locknr ; /∗ Where we f i nd our primary

index ∗/
81
82 u64 onindex num onodes ; /∗ Num onodes in index ∗/
83 u64 onindex used ; /∗ Num of used inodes in index ∗/
84 u64 on index f r e e ; /∗ Num of f r e e onodes in index ∗/
85 u64 on index next id ; /∗ Next ID to use ∗/
86 u32 on index node s i z e ; /∗ In number o f keys ∗/
87
88 union spa c e t r a ck i ng {
89
90 char padding [ 5 0 ] ;
91 } space ;
92 } ;
93
94 #define FCFS ONODE MAGIC1 0x4f4e6f4465563101ULL /∗

ONoDeV1 0 x01 ∗/
95
96 enum f c f s o n o d e f l a g s {
97 FCFS OFLAG NoVersion , /∗ Don ’ t ve r s i on t rack t h i s onode

∗/
98 FCFS OFLAG ForkLeaf /∗ We have a f o r k l e a f , not a

node ∗/
99 } ;

100
101 #define FSFS ONODE1 SPACE LEAF MAXNR 10
102
103 struct f c f s o n o d e 1 s p a c e l e a f {
104 char nr ;
105 struct f c f s b l o c k r u n br [FSFS ONODE1 SPACE LEAF MAXNR ] ;
106 } ;
107
108 struct f c f s onode1 spa c e node {
109 u64 o f f s e t [ 7 ] ;
110 u64 b lock [ 7 ] ;
111 } ;
112
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113 enum f c f s f o r k f l a g s {
114 FCFS FORK InForkData , /∗ We have data , not space nodes

∗/
115 FCFS FORK SpaceNode /∗ Space i s node , not l e a f ∗/
116 } ;
117
118 #define FCFS FORK SMALL DATA SIZE 112
119
120 struct f c f s f o r k {
121 u64 f o r k type ;
122 u64 f o r k f l a g s ;
123 u64 content l eng th ;
124 union data {
125 union space {
126 struct f c f s o n o d e 1 s p a c e l e a f l e a f ;
127 struct f c f s onode1 spa c e node node ;
128 } space ;
129
130 char sma l l da ta [FCFS FORK SMALL DATA SIZE ] ; /∗ I wish t h i s

was neater , as par t o f the l e a f ∗/
131 } data ;
132 } ;
133
134 struct f c f s f o r k l e a f {
135 char nr ;
136 struct f c f s f o r k fo rk [ 1 0 ] ;
137 } ;
138
139 struct f c f s f o r k n o d e {
140 u64 o f f s e t [ 7 ] ;
141 u64 b lock [ 7 ] ;
142 } ;
143
144 struct f c f s onode1 {
145 u64 magic1 ; /∗ I d e n t i f y as O−Node ∗/
146 u64 onode num ; /∗ FS Sp e c i f i c Unique ID ∗/
147 u64 onode r ev i s i on ; /∗ Revis ion o f onode ∗/
148 u64 f l a g s ; /∗ f c f s o n o d e f l a g s ∗/
149 u64 use count ; /∗ Reference Counter ( f o r

i n d i c i e s ) ∗/
150 u32 onode s i z e ; /∗ Length o f o−node s t r u c t u r e . ∗/
151 union f o r k s {
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152 struct f c f s f o r k l e a f l e a f ;
153 struct f c f s f o r k n o d e node ;
154 } f o r k s ;
155 char sma l l space [ 1 ] ; /∗ used f o r in−onode data ( or

metadata ) ∗/
156 } ;
157
158
159 /∗ Funct ions f o r manipu la t ing the Super Block ∗/
160 int f c f s w r i t e s b ( struct f c f s d i s k ∗ d i sk ) ;
161 int f c f s s b ma r k d i r t y ( struct f c f s d i s k ∗ d i sk ) ;
162 int f c f s s b ma r k c l e a n ( struct f c f s d i s k ∗ d i sk ) ;
163
164 #endif
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Listing 14: fcfs/fcfs vfs.h

1 /∗
2 f c f s v f s . h
3 −−−−−−−−−−
4 VFS opera t i ons f o r FCFS
5
6 $Id : f c f s v f s . h , v 1 .1 2003/10/28 16 :17 :54 s t ewar t Exp $

7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GPL

10 ∗/
11
12 #ifndef FCFS VFS H
13 #define FCFS VFS H
14
15 #include ” d i sk . h”
16 #include ” super b lo ck . h”
17 #include ”onode . h”
18
19
20 struct f c f s d i s k ∗ f c f s mount ( char ∗name) ;
21 int f c f s umount ( struct f c f s d i s k ∗ d i sk ) ;
22
23
24 #endif
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Listing 15: fcfs/disk testkit.c

1 /∗ d i s k t e s t k i t . c
2 −−−−−−−−−−−−−−
3
4 Disk acce s s f unc t i on s used under Stewart Smith ’ s Te s t k i t .
5
6 $Id : d i s k t e s t k i t . c , v 1 .7 2003/10/20 07 :18 :11 s t ewar t Exp $

7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GNU Pub l i c License

10
11 ∗/
12
13 #include < s t d i o . h>
14 #include < s t d l i b . h>
15 #include ” t e s t k i t / b lock dev . h”
16 #include ” d i sk . h”
17
18 /∗ disk new
19 −−−−−−−−
20 new d i s k o b j e c t from t e s t k i t b l o c k dev i ce .
21 ∗/
22 struct f c f s d i s k ∗ disk new ( struct b l o ck dev i c e ∗ bdev )
23 {
24 struct f c f s d i s k ∗ d i sk ;
25
26 d i sk = ( struct f c f s d i s k ∗) mal loc ( s izeof ( struct f c f s d i s k ) ) ;
27 disk−>o s p r i v a t e = bdev ;
28 disk−>bs i z e = bdev−>b l o c k s i z e ;
29 disk−>b locksnr = bdev−>num blocks ;
30 disk−>sb = NULL;
31 return d i sk ;
32 }
33
34 /∗ d i s k f r e e
35 −−−−−−−−−
36 Close and f r e e the d i s k .
37 ∗/
38 struct f c f s d i s k ∗ d i s k f r e e ( struct f c f s d i s k ∗ d i sk )
39 {
40 b l o c k d e v c l o s e ( disk−>o s p r i v a t e ) ;
41 f r e e ( d i sk ) ;
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42 }
43
44 /∗ Return an empty d i s k b l o c k f o r the b l o c k . Does not read from

d i s k ∗/
45 struct f c f s d i s k b l o c k ∗ disk newblock ( struct f c f s d i s k ∗ disk ,

s e c t o r t b lock )
46 {
47 struct f c f s d i s k b l o c k ∗ d i s k b l o ck ;
48
49 d i s k b l o ck = ( struct f c f s d i s k b l o c k ∗) mal loc ( s izeof ( struct

f c f s d i s k b l o c k ) ) ;
50 i f ( d i s k b l o ck==NULL)
51 {
52 f p r i n t f ( s tde r r , ”Unable to a l l o c a t e d i s k b l o ck \n” ) ;
53 abort ( ) ;
54 }
55 d i sk b lock−>o s p r i v a t e = bnew( disk−>o s p r i v a t e , block , disk−>

bs i z e ) ;
56 d i sk b lock−>blocknr = block ;
57 d i sk b lock−>bs i z e = disk−>bs i z e ;
58 d i sk b lock−>data = (( struct bu f f e r head ∗) ( d i sk b lock−>

o s p r i v a t e ) )−>b data ;
59 ( ( struct bu f f e r head ∗) ( d i sk b lock−>o s p r i v a t e ) )−>b count++;
60 d i sk b lock−>d i sk = d i sk ;
61
62 return d i s k b l o ck ;
63 }
64
65 /∗ Al l o ca t e and re turn a d i s k b l o c k ∗/
66 struct f c f s d i s k b l o c k ∗ d i s k g e tb l o ck ( struct f c f s d i s k ∗ disk ,

s e c t o r t b lock )
67 {
68 struct f c f s d i s k b l o c k ∗ d i s k b l o ck ;
69
70 d i s k b l o ck = ( struct f c f s d i s k b l o c k ∗) mal loc ( s izeof ( struct

f c f s d i s k b l o c k ) ) ;
71 i f ( d i s k b l o ck==NULL)
72 {
73 f p r i n t f ( s tde r r , ”Unable to a l l o c a t e d i s k b l o ck \n” ) ;
74 abort ( ) ;
75 }
76
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77 // f p r i n t f ( s t de r r ,”DISK GETBLOCK: 0 x%l l x \n” , b l o c k ) ;
78
79 d i sk b lock−>o s p r i v a t e = bread ( disk−>o s p r i v a t e , block , disk−>

bs i z e ) ;
80 d i sk b lock−>blocknr = block ;
81 d i sk b lock−>bs i z e = disk−>bs i z e ;
82 d i sk b lock−>data = (( struct bu f f e r head ∗) ( d i sk b lock−>

o s p r i v a t e ) )−>b data ;
83 ( ( struct bu f f e r head ∗) ( d i sk b lock−>o s p r i v a t e ) )−>b count++;
84 d i sk b lock−>d i sk = d i sk ;
85
86 return d i s k b l o ck ;
87 }
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Listing 16: fcfs/super block.c

1 /∗ s up e r b l o c k . c
2 −−−−−−−−−−−−−
3 $Id : s up e r b l o c k . c , v 1 .2 2003/09/22 09 :02 :16 s t ewar t Exp $

4
5 The long awaited supe r b l o c k . c
6 i wish i had coded t h i s be fore , gah , i thought i had .
7 maybe i shou ld g i v e up the booze and l a t e n i g h t s up coding .
8
9 This f i l e con ta in s a l l t ho se f unc t i on s d ea l i n g wi th the super

10 b l o c k o f the FCFS Objec t S tore .
11
12
13 One day , we need a b e t t e r name than FCFS, but r e a l l y − come up
14 with one . StewStore j u s t seems lame .
15
16 (C) 2003 Stewart Smith
17 Di s t r i b u t e d under the GNU Pub l i c License .
18 ∗/
19
20 #include < s t d i o . h>
21 #include < s t d l i b . h>
22 #include < s t r i n g . h>
23 #include ” t e s t k i t / types . h”
24
25 #include ” d i sk . h”
26 #include ” super b lo ck . h”
27
28 int f c f s w r i t e s b ( struct f c f s d i s k ∗ d i sk )
29 {
30 struct f c f s d i s k b l o c k ∗ block ;
31 b lock = d i s k g e tb l o ck ( disk , 0 ) ;
32 d i s k wr i t eb l o ck ( b lock ) ;
33 d i s k f r e e b l o c k ( b lock ) ;
34 return 1 ;
35 }
36
37 int f c f s s b ma r k d i r t y ( struct f c f s d i s k ∗ d i sk )
38 {
39 s e t b i t (FCFS FLAG Dirty ,&( disk−>sb−>f l a g s ) ) ;
40 f c f s w r i t e s b ( d i sk ) ;
41 return 1 ;



122

42 }
43
44 int f c f s s b ma r k c l e a n ( struct f c f s d i s k ∗ d i sk )
45 {
46 c l e a r b i t (FCFS FLAG Dirty ,&( disk−>sb−>f l a g s ) ) ;
47 f c f s w r i t e s b ( d i sk ) ;
48 return 1 ;
49 }
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Listing 17: fcfs/space bitmap.c

1 /∗ space b i tmap . c
2 −−−−−−−−−−−−−−
3 Simple space a l l o c a t o r us ing a bitmap
4
5 $Id : space b i tmap . c , v 1 .11 2003/10/20 07 :18 :11 s t ewar t Exp $

6
7 (C) 2003 Stewart Smith
8 Di s t r i b u t e d under the GNU Pub l i c License
9 ∗/

10
11 #include < s t d i o . h>
12 #include < s t d l i b . h>
13 #include ” t e s t k i t / b lock dev . h”
14 #include ” t e s t k i t / b i t ops . h”
15 #include ” super b lo ck . h”
16 #include ” d i sk . h”
17 #include ” space bitmap . h”
18
19 #define MAX DIV(a , b) ( ( ( a%b)==0)?( a/b) : ( a/b)+1)
20
21 u64 n e x t f r e e = 300 ;
22
23 u32 space b i tmap s i z e ( struct f c f s s b ∗ sb , int ag )
24 {
25 /∗ i f l a s t ag , i s remaining no . o f b l o c k s ∗/
26 i f ( ag == sb−>a l l o c a t i on g r oup sn r −1)
27 return MAX DIV(MAX DIV( ( sb−>ag b locksnr+(sb−>b locksnr%sb−>

a l l o c a t i o n g r oup s n r ) ) , 8 ) , sb−>bs i z e ) ;
28 else
29 /∗ 1 b i t per b l o c k ∗/
30 return MAX DIV(MAX DIV( sb−>ag b locksnr , 8 ) , sb−>bs i z e ) ;
31 }
32
33 int spa c e b i tmap a l l o c a t e b l o ck ( struct f c f s d i s k ∗ disk , u32

a l l o c a t i on g r oup , u32 b lock )
34 {
35 struct f c f s d i s k b l o c k ∗b ;
36
37 #ifdef DEBUG SPACE BITMAP
38 p r i n t f ( ”ALLOC %u %u\n” , a l l o c a t i on g r oup , b lock ) ;
39 #endif
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40
41 b = d i s k g e tb l o ck ( disk ,
42 ( a l l o c a t i o n g r oup ) ∗disk−>sb−>ag b locksnr
43 +(block /( disk−>sb−>bs i z e ∗8) )
44 +1) ;
45 s e t b i t ( b lock%8,
46 (b−>data+(( b lock%(disk−>sb−>bs i z e ∗8) ) /8) ) ) ;
47
48 d i s k wr i t eb l o ck (b) ;
49 d i s k f r e e b l o c k (b) ;
50 return 0 ;
51 }
52
53 struct f c f s b l o c k r u n ∗ a g a l l o c a t e b l o c k ( struct f c f s d i s k ∗ disk ,

u32 a l l o c a t i on g r oup , u32 near , u32 b lock snr )
54 {
55 struct f c f s b l o c k r u n ∗ br ;
56 int i ;
57
58 #ifdef DEBUG SPACE BITMAP
59 p r i n t f ( ”%u %u\n” , a l l o c a t i on g r oup , near ) ;
60 #endif
61
62 br = ( struct f c f s b l o c k r u n ∗) mal loc ( s izeof ( struct

f c f s b l o c k r u n ) ) ;
63 i f ( ! br )
64 {
65 f p r i n t f ( s tde r r , ” a g a l l o c a t e b l o c k : Unable to a l l o c a t e

b lock run \n” ) ;
66 abort ( ) ;
67 }
68
69 br−>s t a r t = 0 ;
70 br−>l en = 0 ;
71
72 i f ( near+b locksnr > disk−>sb−>ag b locksnr )
73 b lock snr = disk−>sb−>ag b locksnr − near ;
74
75 for ( i =1; i<=blocksnr+1; i++)
76 {
77 i f ( near+i>=disk−>sb−>ag b locksnr )
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78 { a l l o c a t i o n g r oup++;near=0; i =0; br−>s t a r t =0;br−>l en =0;/∗
p r i n t f (”RESTARTING BLOCK SEARCH IN NEW ALLOCATION
GROUP\n”) ; ∗/}

79 i f ( a g b l o c k f r e e ( disk , a l l o c a t i on g r oup , near+i ) )
80 {
81 #ifdef DEBUG SPACE BITMAP
82 f p r i n t f ( s tde r r , ”BLOCK %lu %lu i s f r e e \n” ,

a l l o c a t i on g r oup , near+i ) ;
83 #endif
84 i f ( br−>s t a r t==0)
85 { br−>s t a r t=near+i ; br−>l en =1;}
86 else
87 i f ( ( br−>s t a r t+br−>l en )==(near+i −1) )
88 br−>l en++;
89 }
90 else
91 {
92 // f p r i n t f ( s t de r r ,”BLOCK %lu % lu i sn ’ t f r e e \n” ,

a l l o c a t i on g r oup , near+i ) ;
93 near++;
94 i =0;
95 }
96 }
97
98 br−>a l l o c a t i o n g r oup = a l l o c a t i on g r oup ;
99

100 for ( i =0; i<br−>l en ; i++)
101 spa c e b i tmap a l l o c a t e b l o ck ( disk , br−>a l l o c a t i on g r oup , br−>

s t a r t+i ) ;
102
103 n e x t f r e e = br−>s t a r t + br−>l en ;
104
105 return br ;
106 }
107
108 u64 a g b l o c k f r e e l a s t ;
109 struct f c f s d i s k b l o c k ∗ a g b l o c k f r e e l a s t b l o c k ;
110
111 int a g b l o c k f r e e ( struct f c f s d i s k ∗ disk , u32 a l l o c a t i on g r oup ,

u32 b lock )
112 {
113 struct f c f s d i s k b l o c k ∗b ;
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114 int r e t v a l ;
115
116 #i f d e f DEBUG SPACE BITMAP
117 p r i n t f ( ”\ t%u %u\n” , a l l o c a t i on g r oup , b lock ) ;
118 #endif
119
120 i f ( b lock > disk−>sb−>ag b locksnr )
121 {
122 f p r i n t f ( s tde r r , ”ERROR: a g b l a c k f r e e ( ) can ’ t check b lock

that ’ s out o f t h i s AG\n” ) ;
123 abort ( ) ;
124 }
125
126 i f ( a g b l o c k f r e e l a s t ==0 | |
127 a g b l o c k f r e e l a s t !=
128 ( a l l o c a t i o n g r oup ) ∗disk−>sb−>ag b locksnr+(b lock /( disk−>sb−>

bs i z e ∗8) )+1
129 )
130 {
131 i f ( a g b l o c k f r e e l a s t !=0) d i s k f r e e b l o c k (

a g b l o c k f r e e l a s t b l o c k ) ;
132 a g b l o c k f r e e l a s t = ( a l l o c a t i o n g r oup ) ∗disk−>sb−>

ag b locksnr
133 +(block /( disk−>sb−>bs i z e ∗8) )
134 +1;
135 a g b l o c k f r e e l a s t b l o c k = b = d i s k g e tb l o ck ( disk ,

a g b l o c k f r e e l a s t ) ;
136 }
137 else
138 {
139 b = a g b l o c k f r e e l a s t b l o c k ;
140 }
141
142
143 r e t v a l = ! t e s t b i t ( b lock%8,
144 (b−>data +(( b lock%(disk−>sb−>bs i z e ∗8) ) /8) ) ) ;
145
146
147 return r e t v a l ;
148 }
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Listing 18: fcfs/onode.c

1 /∗ onode . c
2 −−−−−−−
3
4 Code f o r manipu la t ing FCFS O−Nodes and t h e i r f o r k s .
5 Maybe the Fork s t u f f shou ld be in a sepera t e f i l e ,
6 you ’ re welcome to patch : )
7
8 $Id : onode . c , v 1 .15 2003/10/20 07 :18 :11 s t ewar t Exp $

9
10 (C) 2003 Stewart Smith
11 Di s t r i b u t e d under the GNU Pub l i c License
12
13 Debugged wi th Beer (TM)
14 ∗/
15
16 #include < s t d i o . h>
17 #include < s t d l i b . h>
18 #include < s t r i n g . h>
19 #include < a s s e r t . h>
20 #include <time . h>
21
22 #include ” t e s t k i t / types . h”
23 #include ” super b lo ck . h”
24 #include ” d i sk . h”
25 #include ”onode . h”
26 #include ” onode index . h”
27 #include ” space bitmap . h”
28 #include ” onode vers ioned . h”
29
30 struct f c f s onode1 ∗ onode1 new ( struct f c f s d i s k ∗ d i sk )
31 {
32 struct f c f s onode1 ∗ node ;
33
34 node = ( struct f c f s onode1 ∗) mal loc ( s izeof ( struct f c f s onode1 ) ) ;
35 i f ( ! node )
36 {
37 f p r i n t f ( s tde r r , ” cannot a l l o c a t e onode1 , e x i t i n g \n” ) ;
38 abort ( ) ;
39 }
40
41 node−>magic1 = FCFS ONODE MAGIC1;
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42 node−>onode num = 0;
43 node−>onode r ev i s i on = 0 ;
44 s e t b i t (FCFS OFLAG ForkLeaf ,&(node−>f l a g s ) ) ;
45 node−>use count = 0 ;
46 node−>onode s i z e = s izeof ( struct f c f s onode1 ) ;
47 node−>f o r k s . l e a f . nr = 0 ;
48
49 return node ;
50 }
51
52 struct f c f s onode1 ∗ onode1 f r e e ( struct f c f s onode1 ∗ onode )
53 {
54 f r e e ( onode ) ;
55 return NULL;
56 }
57
58 /∗
59 FIXME: the a l l o w i n t e r n a l i s nas ty hack , shou ld be removed and

made e l e g an t
60 ∗/
61 int onode1 fork new ( struct f c f s d i s k ∗ disk , struct f c f s b l o c k r u n

∗ onode br , u64 fo rk type , u64 content l eng th , void ∗ content ,
int a l l ow i n t e r n a l )

62 {
63 struct f c f s d i s k b l o c k ∗ block ;
64 struct f c f s onode1 ∗ onode ;
65
66 b lock = d i s k g e tb l o ck ( disk ,BR SECTOR T( disk , onode br ) ) ;
67 onode = ( struct f c f s onode1 ∗) block−>data ;
68
69 onode−>f o r k s . l e a f . nr++; /∗ shou ld be atomic ∗/
70 onode−>f o r k s . l e a f . f o rk [ onode−>f o r k s . l e a f . nr −1] . f o r k t ype =

fo rk type ;
71 onode−>f o r k s . l e a f . f o rk [ onode−>f o r k s . l e a f . nr −1] . c ontent l eng th

= content l eng th ;
72 i f ( content l eng th <= FCFS FORK SMALL DATA SIZE &&

content l eng th > 0 && a l l ow i n t e r n a l )
73 { /∗ Let ’ s make i t a sma l l d a t a

node ∗/
74 onode−>f o r k s . l e a f . f o rk [ onode−>f o r k s . l e a f . nr −1] . f o r k f l a g s

= FCFS FORK InForkData ;
75 i f ( content !=NULL)
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76 memcpy( onode−>f o r k s . l e a f . f o rk [ onode−>f o r k s . l e a f . nr −1] .
data . smal l data , content , content l eng th ) ;

77 else
78 memset ( onode−>f o r k s . l e a f . f o rk [ onode−>f o r k s . l e a f . nr −1] .

data . smal l data , 0 , FCFS FORK SMALL DATA SIZE) ;
79 }
80 else /∗ We’ re go ing to need more

space ! ∗/
81 {
82 onode−>f o r k s . l e a f . f o rk [ onode−>f o r k s . l e a f . nr −1] . f o r k f l a g s

= 0 ;
83 onode−>f o r k s . l e a f . f o rk [ onode−>f o r k s . l e a f . nr −1] . data . space .

l e a f . nr = 0 ;
84
85 i f ( content l eng th > FCFS FORK SMALL DATA SIZE && content !=

NULL)
86 f p r i n t f ( s tde r r , ”∗∗FIXME∗∗ Need l a r g e r ob j e c t s \n” ) ;
87 else
88 {
89 #ifdef DEBUGONODE
90 f p r i n t f ( s tde r r , ”PREALLOCATING ONODE FORK SPACE\n\n” ) ;
91 #endif
92 onode1 fork grow ( disk , onode br , onode−>f o r k s . l e a f . nr−1,

content l eng th /disk−>bs i z e + ( ( content l eng th%disk−>

bs i z e ) ? 1 : 0 ) ) ;}
93 }
94
95 d i s k wr i t eb l o ck ( b lock ) ;
96 d i s k f r e e b l o c k ( b lock ) ;
97
98 return onode−>f o r k s . l e a f . nr−1;
99 }

100
101 struct f c f s d i s k b l o c k ∗ onode1 fo rk ge tb l o ck ( struct f c f s d i s k ∗

disk , struct f c f s onode1 ∗ onode , int f o rknr , u64 b locknr )
102 {
103 int i ;
104 u64 cur b locknr ;
105 struct f c f s d i s k b l o c k ∗ block ;
106
107 b lock = NULL;
108
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109 i f ( f o rknr > onode−>f o r k s . l e a f . nr )
110 {
111 f p r i n t f ( s tde r r , ” I nva l i d Fork Number f o r onode\n” ) ;
112 abort ( ) ;
113 }
114
115 // f p r i n t f ( s t de r r ,”\n\n\ t \ t \tGETTING b locknr % l l u from l e a f . nr

%d\n\n” , b locknr , onode−>f o r k s . l e a f . f o r k [ f o rknr ] . data . space .
l e a f . nr ) ;

116
117 cur b locknr = 0 ;
118 for ( i =0; i<onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . nr ; i

++)
119 {
120 i f ( cur b lo cknr+onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space .

l e a f . br [ i ] . l en
121 >= blocknr )
122 { /∗ b l ocknr in current br ∗/
123 b lock = d i s k g e tb l o ck ( disk ,
124 BR SECTOR T( disk ,
125 &(onode−>f o r k s . l e a f . f o rk [ f o rknr ] .

data . space . l e a f . br [ i ] ) )
126 +(blocknr−cur b locknr ) ) ;
127 // f p r i n t f ( s t de r r ,”GOT BLOCK#%l l u \n” , b lock−>

b l ocknr ) ;
128
129 break ;
130 }
131 else
132 {
133 cur b locknr+=onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space .

l e a f . br [ i ] . l en ;
134 }
135 }
136
137 return block ;
138 }
139
140 u64 onode1 fo rk l eng th ( struct f c f s onode1 ∗ onode , int f o rknr )
141 {
142 return ( onode−>f o r k s . l e a f . f o rk [ f o rknr ] . c ontent l eng th ) ;
143 }
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144
145 int onode1 f o r k wr i t e v e r s i on ed ( struct f c f s d i s k ∗ disk , struct

f c f s onode1 ∗ onode , struct f c f s b l o c k r u n ∗ onode br , int
f o rknr , u64 pos , u64 content l eng th , void ∗ content )

146 {
147 void ∗ olddata ;
148 struct f c f s o n o d e f o r k r e v rev ;
149
150 rev . magic1 = FCFS ONODE FORK REV MAGIC1;
151 rev . time = time (NULL) ;
152 rev . r e v i s i o n = onode−>onode r ev i s i on ; /∗ FIXME ∗/
153 rev . c o n s i s t e n t r e v i s i o n = onode−>onode r ev i s i on ; /∗ FIXME ∗/
154 rev . ope ra t i on = FCFS ONODE FORK REV REPLACE;
155 rev . r e v o f f s e t = onode1 fo rk l eng th ( onode , f o rknr+1) ;
156 rev . r e v l eng th = content l eng th ;
157 rev . o f f s e t = pos ;
158 memset ( rev . space , 0 , 1 6 ) ;
159
160 olddata = mal loc ( content l eng th ) ;
161 i f ( ! o lddata )
162 { f p r i n t f ( s tde r r , ”No memory f o r updating content \n” ) ; abort ( ) ;}
163 onode1 fo rk r ead ( disk , onode , forknr , pos , content l eng th , o lddata ) ;
164 onode1 fo rk wr i t e ( disk , onode br , f o rknr+1, onode1 fo rk l eng th (

onode , f o rknr+1) , content l eng th , o lddata ) ;
165 onode1 fo rk wr i t e ( disk , onode br , f o rknr+2, onode1 fo rk l eng th (

onode , f o rknr+2) , s izeof ( struct f c f s o n o d e f o r k r e v ) ,&rev ) ;
166 onode1 fo rk wr i t e ( disk , onode br , forknr , pos , content l eng th ,

content ) ;
167 return 1 ;
168 }
169
170 int onode1 fo rk wr i t e ( struct f c f s d i s k ∗ disk , struct

f c f s b l o c k r u n ∗ onode br , int f o rknr , u64 pos , u64
content l eng th , void ∗ content )

171 {
172 struct f c f s d i s k b l o c k ∗ onode block ;
173 struct f c f s d i s k b l o c k ∗ block ;
174 struct f c f s onode1 ∗ onode ;
175 u64 wr i t e l e ng th ;
176 u64 done length ;
177
178 onode block = d i s k g e tb l o ck ( disk ,BR SECTOR T( disk , onode br ) ) ;
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179 onode = ( struct f c f s onode1 ∗) onode block−>data ;
180
181 i f ( f o rknr > onode−>f o r k s . l e a f . nr )
182 {
183 f p r i n t f ( s tde r r , ” I nva l i d Fork Number f o r onode\n” ) ;
184 abort ( ) ;
185 }
186 i f ( content l eng th==0)
187 {
188 f p r i n t f ( s tde r r , ”Must have some content to wr i t e \n” ) ;
189 abort ( ) ;
190 }
191
192 i f ( ( pos+content l eng th ) > onode−>f o r k s . l e a f . f o rk [ f o rknr ] .

c ontent l eng th )
193 { /∗ Grow Onode Fork ∗/
194 i f ( content l eng th > ( disk−>bs i z e − onode−>f o r k s . l e a f . f o rk [

f o rknr ] . c ontent l eng th%disk−>bs i z e ) | | onode−>f o r k s . l e a f
. f o rk [ f o rknr ] . c ontent l eng th%disk−>bs i z e==0)

195 {
196 #ifdef DEBUG ONODE WRITE
197 f p r i n t f ( s tde r r , ”GROWING in WRITE\n” ) ;
198 #endif
199 onode1 fork grow ( disk , onode br , forknr ,
200 ( pos+content l eng th
201 − onode−>f o r k s . l e a f . f o rk [ f o rknr ] .

c ontent l eng th )
202 / disk−>bs i z e
203 ) ;
204 }
205 else
206 f p r i n t f ( s tde r r , ”ENOUGH SPACE IN EXISTING BLOCK\n” ) ;
207 }
208
209 done length = pos%disk−>bs i z e ;
210 do
211 {
212 // f p r i n t f ( s t de r r ,”DEBUG−−−− content % l l u done % l l u \n

” , c on t en t l en g t h , done l eng th ) ;
213
214 i f ( content l eng th <= disk−>bs i z e )
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215 i f ( ( disk−>bs i z e − done length%disk−>bs i z e ) <

content l eng th )
216 {// f p r i n t f ( s t de r r ,”\n\n\ t \ t1 \n\n”) ;
217 wr i t e l e ng th = disk−>bs i z e − done length%disk−>bs i z e

;}
218 else
219 {// f p r i n t f ( s t de r r ,”\n\n\ t \ t2 \n\n”) ;
220 wr i t e l e ng th = content l eng th ;}
221 else
222 {// f p r i n t f ( s t de r r ,”\n\n\ t \ t3 \n\n”) ;
223 wr i t e l e ng th = disk−>bs i z e − ( done length%disk−>bs i z e )

;}
224
225 #ifdef DEBUG ONODE WRITE
226 f p r i n t f ( s tde r r , ”&&&&&&&&&&&WRITE LENGTH = %l lu , % l l u , % l l u \

n” , wr i t e l eng th , pos , done length ) ;
227 #endif
228
229 // f p r i n t f ( s t de r r ,”ˆˆˆˆˆˆˆˆˆˆˆGETTING BLOCK = % l l u \n” ,

done l eng th / d i sk−>b s i z e ) ;
230 b lock = onode1 fo rk ge tb l o ck ( disk , onode , forknr , ( pos + (

done length − pos%disk−>bs i z e ) ) / disk−>bs i z e ) ;
231
232 memcpy( block−>data+(done length%disk−>bs i z e ) , content +(

done length − pos%disk−>bs i z e ) , w r i t e l e ng th ) ;
233
234 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . c ontent l eng th+=wr i t e l e ng th

;
235 content l eng th−=wr i t e l eng th ;
236 done length+=wr i t e l e ng th ;
237
238 d i s k wr i t eb l o ck ( b lock ) ;
239 d i s k f r e e b l o c k ( b lock ) ;
240 // f p r i n t f ( s t de r r , ” ! ! ! ! ! ! ! ! ! ! ! ! ! ! LOOPING WITH % l l u , %

l l u \n” , c on t en t l en g t h , done l eng th ) ;
241 } while ( content l eng th > 0) ;
242
243 // f p r i n t f ( s t de r r ,”\n\nDONE WRITE() \n\n”) ;
244
245 d i s k wr i t eb l o ck ( onode block ) ;
246 d i s k f r e e b l o c k ( onode block ) ;
247 }
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248
249 u64 onode1 fo rk r ead ( struct f c f s d i s k ∗ disk , struct f c f s onode1 ∗

onode , int f o rknr , u64 pos , u64 content l eng th , void ∗ content )
250 {
251 struct f c f s d i s k b l o c k ∗ block ;
252 u64 read l eng th ;
253 u64 done length ;
254
255 i f ( f o rknr > onode−>f o r k s . l e a f . nr )
256 {
257 f p r i n t f ( s tde r r , ” I nva l i d Fork Number f o r onode\n” ) ;
258 abort ( ) ;
259 }
260 i f ( content l eng th==0)
261 {
262 f p r i n t f ( s tde r r , ”Must have some content to read \n” ) ;
263 abort ( ) ;
264 }
265
266 i f ( pos > onode−>f o r k s . l e a f . f o rk [ f o rknr ] . c ontent l eng th )
267 {
268 f p r i n t f ( s tde r r , ”ERROR IN READ( ) : pos > content l eng th \n” ) ;
269 return 0 ;
270 }
271
272 i f ( ( pos+content l eng th ) > onode−>f o r k s . l e a f . f o rk [ f o rknr ] .

c ontent l eng th )
273 {
274 f p r i n t f ( s tde r r , ”ERROR IN READ( ) : pos+content l eng th >

content l eng th \n” ) ;
275 content l eng th = onode−>f o r k s . l e a f . f o rk [ f o rknr ] .

c ontent l eng th − pos ;
276 }
277
278 done length = pos%disk−>bs i z e ;
279 do
280 {
281 #ifdef DEBUG ONODE READ
282 f p r i n t f ( s tde r r , ”DEBUG−−−− content % l l u done % l l u \n” ,

content l eng th , done length ) ;
283 #endif
284
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285 i f ( content l eng th <= disk−>bs i z e )
286 i f ( ( disk−>bs i z e − done length%disk−>bs i z e ) <

content l eng th )
287 { r ead l eng th = disk−>bs i z e − done length%disk−>bs i z e ;}
288 else
289 { r ead l eng th = content l eng th ;}
290 else
291 { r ead l eng th = disk−>bs i z e − ( done length%disk−>bs i z e ) ;}
292
293 #ifdef DEBUG ONODE READ
294 f p r i n t f ( s tde r r , ”&&&&&&&&&&&READ LENGTH = % l l u \n” ,

r ead l eng th ) ;
295
296 f p r i n t f ( s tde r r , ” ˆˆˆˆˆˆˆˆˆˆˆGETTING BLOCK = % l l u \n” ,

done length / disk−>bs i z e ) ;
297 #endif
298 b lock = onode1 fo rk ge tb l o ck ( disk , onode , forknr , ( pos + (

done length − pos%disk−>bs i z e ) ) / disk−>bs i z e ) ;
299
300 memcpy( content+(done length − pos%disk−>bs i z e ) , block−>data

+(done length%disk−>bs i z e ) , r ead l eng th ) ;
301
302 content l eng th−=read l eng th ;
303 done length+=read l eng th ;
304
305 d i s k f r e e b l o c k ( b lock ) ;
306 #ifdef DEBUG ONODE READ
307 f p r i n t f ( s tde r r , ” ! ! ! ! ! ! ! ! ! ! ! ! ! ! LOOPING WITH %l lu , % l l u \n” ,

content l eng th , done length ) ;
308 #endif
309 } while ( content l eng th > 0) ;
310 #ifdef DEBUG ONODE READ
311 f p r i n t f ( s tde r r , ”\n\nDONE READ( ) \n\n” ) ;
312 #endif
313 return ( done length − pos%disk−>bs i z e ) ;
314 }
315
316
317 int onode1 fork grow ( struct f c f s d i s k ∗ disk , struct

f c f s b l o c k r u n ∗ onode br , int f o rknr , u64 b lock snr )
318 {
319 struct f c f s b l o c k r u n ∗ newbr ;
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320 struct f c f s onode1 ∗ onode ;
321 struct f c f s d i s k b l o c k ∗ block ;
322 struct f c f s d i s k b l o c k ∗ blockz ;
323 int l e a f n r ;
324 int i ;
325
326 b lock = d i s k g e tb l o ck ( disk ,BR SECTOR T( disk , onode br ) ) ;
327 onode = ( struct f c f s onode1 ∗) block−>data ;
328 i f ( t e s t b i t (FCFS FORK InForkData ,&( onode−>f o r k s . l e a f . f o rk [

f o rknr ] . f o r k f l a g s ) ) )
329 {
330 /∗ We’ re changing a InFork Fork − and we shouldn ’ t be ! ∗/
331 f p r i n t f ( s tde r r , ”ERROR: Trying to grow InForkData fo rk !\n” ) ;
332 abort ( ) ;
333 }
334 else
335 {
336 /∗ We’ re changing a normal f o r k ∗/
337 i f ( onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . nr >=

FSFS ONODE1 SPACE LEAF MAXNR)
338 {
339 f p r i n t f ( s tde r r , ”FIXME−ERROR: Growing fo rk beyond l e a f

s i z e \n” ) ;
340 abort ( ) ;
341 }
342 else
343 {
344 #ifdef ONODEGROWDEBUG
345 f p r i n t f ( s tde r r , ”ONODE GROW\n” ) ;
346 #endif
347 l e a f n r = onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f

. nr ;
348 // p r i n t f (” onode fork grow \n”) ;
349 i f ( l e a f n r )
350 newbr = ag a l l o c a t e b l o c k ( disk ,
351 onode−>f o r k s . l e a f . f o rk [

f o rknr ] . data . space . l e a f .
br [ l e a f n r −1] .
a l l o c a t i on g r oup ,

352 onode−>f o r k s . l e a f . f o rk [
f o rknr ] . data . space . l e a f .
br [ l e a f n r −1] . s t a r t ,
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353 //+onode−>f o r k s . l e a f . f o r k [
f o rknr ] . data . space . l e a f .
br [ l ea fnr −1]. len −1,

354 // onode br−>s t a r t ,
355 b locksnr ) ;
356 else
357 newbr = ag a l l o c a t e b l o c k ( disk ,
358 onode br−>a l l o c a t i on g r oup ,
359 300 ,
360 b lock snr ) ;
361
362
363 #ifdef ONODEGROWDEBUG
364 f p r i n t f ( s tde r r , ”\n\ t \ t \ t \ t \tFORKNR INFO %u %u %u %u\n\n

” ,
365 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f .

br [ l e a f n r −1] . a l l o c a t i on g r oup ,
366 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f .

br [ l e a f n r −1] . s t a r t ,
367 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f .

br [ l e a f n r −1] . len , newbr−>s t a r t ) ;
368 #endif
369
370 i f ( l e a f n r >0 &&
371 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . br [

l e a f n r −1] . a l l o c a t i on g r oup == newbr−>

a l l o c a t i o n g r oup
372 && onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . br

[ l e a f n r −1] . s t a r t
373 + onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f .

br [ l e a f n r −1] . l en
374 == newbr−>s t a r t
375 )
376 { /∗ Extend current b l ock run ∗/
377 #ifdef ONODEGROWDEBUG
378 f p r i n t f ( s tde r r , ”Extended Ex i s t ing Block Run ! by %u\

n” , newbr−>l en ) ;
379 #endif
380 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . br [

l e a f n r −1] . l en+=
381 newbr−>l en ;
382 }
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383 else
384 {
385 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . nr

++;
386 l e a f n r = onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space .

l e a f . nr ;
387
388 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . br [

l e a f n r −1] . a l l o c a t i o n g r oup = newbr−>

a l l o c a t i o n g r oup ;
389 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . br [

l e a f n r −1] . s t a r t = newbr−>s t a r t ;
390 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space . l e a f . br [

l e a f n r −1] . l en = newbr−>l en ;
391 #ifdef ONODEGROWDEBUG
392 f p r i n t f ( s tde r r , ”ONODE GROWN WITH BR: %u %u %u #%u\n

” ,
393 newbr−>a l l o c a t i on g r oup ,
394 newbr−>s ta r t ,
395 newbr−>len ,
396 onode−>f o r k s . l e a f . f o rk [ f o rknr ] . data . space .

l e a f . nr
397 ) ;
398 #endif
399 }
400 for ( i=BR SECTOR T( disk , newbr ) ; i<BR SECTOR T( disk , newbr )

+newbr−>l en ; i++)
401 {
402 b lockz = disk newblock ( disk , i ) ;
403 // d i s k w r i t e b l o c k ( b l o c k z ) ; / / we don ’ t wr i te , as we

’ re about
404 // to anyway ( a f t e r

re turn )
405 d i s k f r e e b l o c k ( b lockz ) ;
406 }
407 f r e e ( newbr ) ;
408 }
409 }
410 d i s k wr i t eb l o ck ( b lock ) ;
411 d i s k f r e e b l o c k ( b lock ) ;
412 return 1 ;
413 }
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Listing 19: fcfs/onode index.c

1 /∗ onode index . c
2 −−−−−−−−−−−−−
3 A ca s u a l l y demented B+Tree des igned to s tay ba lanced
4 and be opt imized f o r acce s s from d i s k ( and in−core cache )
5
6 $Id : onode index . c , v 1 .15 2003/10/20 07 :18 :11 s t ewar t Exp $

7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GNU Pub l i c License

10 ∗/
11 #include < s t d i o . h>
12 #include < s t d l i b . h>
13 #include < s t r i n g . h>
14 #include ” t e s t k i t / types . h”
15
16 #include ” d i sk . h”
17 #include ” super b lo ck . h”
18 #include ” space bitmap . h”
19 #include ” onode index . h”
20
21 extern u64 n e x t f r e e ;
22
23 u64 onode index new id ( struct f c f s onode i ndex ∗ index )
24 {
25
26 }
27
28 struct f c f s onode i ndex ∗ onode index read ( struct f c f s d i s k ∗ d i sk )
29 {
30 struct f c f s onode i ndex ∗ index ;
31 struct f c f s d i s k b l o c k ∗ block ;
32
33 index = ( struct f c f s onode i ndex ∗) mal loc ( s izeof ( struct

f c f s onode i ndex ) ) ;
34 i f ( index==NULL)
35 { f p r i n t f ( s tde r r , ”Cannot a l l o c a t e onode index s t ru c tu r e to

read in to \n” ) ;
36 abort ( ) ;}
37 b lock = d i s k g e tb l o ck ( disk , disk−>sb−>onode index b locknr ) ;
38 index−>r o o t b l o ck = block ;
39 index−>root = ( struct f c f s onode i ndex node ∗) block−>data ;
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40
41 index−>d i sk = d i sk ;
42
43 return index ;
44 }
45
46 struct f c f s onode i ndex ∗ onode index new ( struct f c f s d i s k ∗ d i sk )
47 {
48 struct f c f s onode i ndex ∗ index ;
49
50 index = ( struct f c f s onode i ndex ∗) mal loc ( s izeof ( struct

f c f s onode i ndex ) ) ;
51 i f ( index==NULL)
52 { f p r i n t f ( s tde r r , ”Cannot a l l o c a t e onode index s t ru c tu r e \n” ) ;

abort ( ) ;}
53
54 index−>root = NULL;
55 index−>d i sk = d i sk ;
56
57 return index ;
58 }
59
60 int on od e i nd e x w r i t e l e a f ( struct f c f s onode i ndex ∗ index , struct

f c f s o n o d e i n d e x l e a f ∗ l e a f )
61 {
62 struct f c f s d i s k b l o c k ∗ block ;
63
64 b lock = d i s k g e tb l o ck ( index−>disk , l e a f −>block ) ;
65 #ifdef DEBUG ONODE INDEX
66 f p r i n t f ( s tde r r , ”−−WRITE LEAF−−\n” ) ;
67 #endif
68 d i s k wr i t eb l o ck ( b lock ) ;
69 d i s k f r e e b l o c k ( b lock ) ;
70
71 return 1 ;
72 }
73
74 struct f c f s o n o d e i n d e x l e a f ∗ onode index l ea f new ( struct

f c f s onode i ndex ∗ index , struct f c f s onode i ndex node ∗ parent
, int po s i t i o n )

75 {
76 int i ;
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77 struct f c f s b l o c k r u n ∗ br ;
78 struct f c f s o n o d e i n d e x l e a f ∗ l e a f ;
79 struct f c f s d i s k b l o c k ∗ block ;
80
81 // p r i n t f (” onode index l ea f new \n”) ;
82 br = ag a l l o c a t e b l o c k ( index−>disk ,
83 BLOCK AG( index−>disk , parent−>block ) ,
84 parent−>block%index−>disk−>sb−>

ag b locksnr ,
85 1) ;
86 b lock = disk newblock ( index−>disk ,BR SECTOR T( index−>disk , br ) ) ;
87 l e a f = ( struct f c f s o n o d e i n d e x l e a f ∗) block−>data ;
88
89 #ifdef DEBUG ONODE INDEX
90 f p r i n t f ( s tde r r , ”LEAF : AG: %d , Sta r t : %d , Len : %d\n” , br−>

a l l o c a t i on g r oup , br−>s ta r t , br−>l en ) ;
91 #endif
92
93 l e a f −>magic1 = FCFS ONODE INDEX LEAF MAGIC1;
94 l e a f −>id = index−>disk−>sb−>on index next id++;
95 l e a f −>block = BR SECTOR T( index−>disk , br ) ;
96 l e a f −>used = 0ULL;
97
98 for ( i =0; i<index−>disk−>sb−>on index node s i z e ; i++)
99 { l e a f −>i tems [ i ] . key = 0 ; l e a f −>i tems [ i ] . onode b locknr = 0 ; }

100
101 on od e i nd e x w r i t e l e a f ( index , l e a f ) ;
102
103 parent−>i tems [ p o s i t i o n ] . node b locknr = BR SECTOR T( index−>disk ,

br ) ;
104 i f ( parent−>used < po s i t i o n )
105 parent−>used = po s i t i o n ;
106
107 onode index wr i t e node ( index , parent ) ;
108
109 f r e e ( br ) ;
110 return l e a f ;
111 }
112
113 struct f c f s onode i ndex node ∗ onode index read node ( struct

f c f s onode i ndex ∗ index , u64 b locknr )
114 {
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115 struct f c f s onode i ndex node ∗ node ;
116 struct f c f s d i s k b l o c k ∗ block ;
117
118 b lock = d i s k g e tb l o ck ( index−>disk , b locknr ) ;
119
120 node = ( struct f c f s onode i ndex node ∗) block−>data ;
121
122 return node ;
123 }
124
125 int onode index f r e e node ( struct f c f s onode i ndex ∗ index , struct

f c f s onode i ndex node ∗ node )
126 {
127 struct f c f s d i s k b l o c k ∗ block ;
128 b lock = d i s k g e tb l o ck ( index−>disk , node−>block ) ;
129 d i s k f r e e b l o c k ( b lock ) ;
130 f r e e ( node ) ;
131 return 1 ;
132 }
133
134 int onode index wr i t e node ( struct f c f s onode i ndex ∗ index , struct

f c f s onode i ndex node ∗ node )
135 {
136 struct f c f s d i s k b l o c k ∗ block ;
137
138 /∗ Write root to d i s k ∗/
139 b lock = d i s k g e tb l o ck ( index−>disk , node−>block ) ;
140 d i s k wr i t eb l o ck ( b lock ) ;
141 #ifdef DEBUG ONODE INDEX
142 f p r i n t f ( s tde r r , ”−−WRITE NODE−−\n” ) ;
143 #endif
144 d i s k f r e e b l o c k ( b lock ) ;
145
146 return 1 ;
147 }
148
149 /∗ Writes root back to d i s k ∗/
150 stat ic i n l i n e int onode i ndex wr i t e r o o t ( struct f c f s onode i ndex

∗ index )
151 {
152 return onode index wr i t e node ( index , index−>root ) ;
153 }
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154
155 /∗ The ever b e l a t e d onode index new node ∗/
156 struct f c f s d i s k b l o c k ∗ onode index new node ( struct

f c f s onode i ndex ∗ index )
157 {
158 struct f c f s b l o c k r u n ∗ br ;
159 struct f c f s d i s k b l o c k ∗ block ;
160 struct f c f s onode i ndex node ∗ node ;
161 int i ;
162
163 br = ag a l l o c a t e b l o c k ( index−>disk , 0 , 1 , 1 ) ;
164 i f ( ( br−>l en ) < 1)
165 {
166 f p r i n t f ( s tde r r , ”Unable to a l l o c a t e Onode Index Node\n” ) ;
167 f p r i n t f ( s tde r r , ”\tAG: %d , Sta r t : %d , Len : %d\n” , br−>

a l l o c a t i on g r oup , br−>s ta r t , br−>l en ) ;
168 abort ( ) ;
169 }
170
171 f p r i n t f ( s tde r r , ”Onode Index node c r ea t ed at : AG: %d , Sta r t : %d

, Len : %d\n” , br−>a l l o c a t i on g r oup , br−>s ta r t , br−>l en ) ;
172
173 b lock = disk newblock ( index−>disk ,BR SECTOR T( index−>disk , br ) ) ;
174 node = ( struct f c f s onode i ndex node ∗) block−>data ;
175
176 node−>magic1 = FCFS ONODE INDEX NODE MAGIC1;
177 node−>id = index−>disk−>sb−>on index next id++;
178 node−>used = 0ULL;
179 node−>block = br−>s t a r t ;
180
181 for ( i =0; i<index−>disk−>sb−>on index node s i z e ; i++)
182 { node−>i tems [ i ] . key = 0 ; node−>i tems [ i ] . node b locknr = 0;}
183
184 return block ;
185 }
186
187 /∗ Creates a new root node f o r an onode index ∗/
188 int onode index new root ( struct f c f s onode i ndex ∗ index )
189 {
190 struct f c f s onode i ndex node ∗ node ;
191 struct f c f s d i s k b l o c k ∗ block ;
192
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193 b lock = onode index new node ( index ) ;
194 index−>root = ( struct f c f s onode i ndex node ∗) block−>data ;
195 index−>r o o t b l o ck = block ;
196
197 f p r i n t f ( s tde r r , ”∗∗∗∗ONODE INDEX∗∗∗∗ % l l u \n” , block−>blocknr ) ;
198
199 /∗ Move br to index s t r u c t u r e ∗/
200 /∗ Also copy in t o super b lock , and wr i t e to d i s k ∗/
201 /∗ update the SB records ∗/
202 index−>disk−>sb−>onode index b locknr = block−>blocknr ;
203 index−>disk−>sb−>on index f r e e = index−>disk−>sb−>

on index node s i z e ;
204 f c f s w r i t e s b ( index−>d i sk ) ;
205 onode i ndex wr i t e r o o t ( index ) ;
206
207 return 1 ;
208 }
209
210 int on od e i nd e x l e a f i n s e r t ( struct f c f s d i s k ∗ disk , struct

f c f s o n o d e i n d e x l e a f ∗ l e a f , u64 key , u64 va lue )
211 {
212 int pos ;
213 int i ;
214
215 i f ( l e a f −>used==disk−>sb−>on index node s i z e )
216 { /∗ Need to s p l i t l e a f ∗/
217 f p r i n t f ( s tde r r , ” o n od e i nd e x l e a f i n s e r t : f u l l

onode i ndex l e a f . Growing o f l e av e s not yet implemented \
n” ) ;

218 abort ( ) ;
219 }
220
221 i f ( key > l e a f −>i tems [ l e a f −>used −1] . key )
222 { /∗ Append to end o f l e a f ∗/
223 l e a f −>used++; /∗ FIXME: shou ld be atomic ∗/
224 l e a f −>i tems [ l e a f −>used −1] . key = key ;
225 l e a f −>i tems [ l e a f −>used −1] . onode b locknr = value ;
226 return 1 ;
227 }
228 else
229 {
230 for ( i =0; i<l e a f −>used && l ea f −>i tems [ i ] . key < key ; i++)
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231 ; /∗ FIXME: Make b inary search ∗/
232 pos = i ;
233 l e a f −>used++;
234 for ( i=l e a f −>used ; i>pos ; i−−) /∗ Shu f f l e e v e r y t h i n g down ∗/
235 {
236 l e a f −>i tems [ i ] . key = l e a f −>i tems [ i −1] . key ;
237 l e a f −>i tems [ i ] . onode b locknr = l e a f −>i tems [ i −1] .

onode b locknr ;
238 }
239 l e a f −>i tems [ pos ] . key = key ; /∗ Add our key ∗/
240 l e a f −>i tems [ pos ] . onode b locknr = value ; /∗ Add our va lue ∗/
241 return 1 ; /∗ Success ! ∗/
242 }
243
244 return 1 ;
245 }
246
247 /∗ I n s e r t an onode in t o an index ∗/
248 struct f c f s b l o c k r u n ∗ onode i ndex i n s e r t ( struct f c f s onode i ndex

∗ index , struct f c f s onode1 ∗ onode )
249 {
250 struct f c f s b l o c k r u n ∗ onode br ;
251 struct f c f s d i s k b l o c k ∗ block ;
252 struct f c f s onode i ndex node ∗ node ;
253 struct f c f s onode i ndex node ∗ parent ;
254 struct f c f s o n o d e i n d e x l e a f ∗ l e a f ;
255 int i , node pos ;
256
257 i f ( index−>root==NULL)
258 onode index new root ( index ) ;
259
260 /∗ Determine ID fo r onode ∗/
261 // onode−>onode num = ((˜0ULL)/ index−>disk−>sb−>

on index node s i z e ) ∗ ( i +1) ;
262 onode−>onode num = random ( ) ;
263 // index−>disk−>sb−>on inde x ne x t i d++;
264 f c f s w r i t e s b ( index−>d i sk ) ;
265
266 #ifdef DEBUG ONODE INDEX
267 f p r i n t f ( s tde r r , ”STORE ONODE ID: % l l u \n” , onode−>onode num) ;
268 #endif
269
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270 /∗ Revis ion 1 now tha t we ’ re go ing onto d i s k ∗/
271 onode−>onode r ev i s i on = 1 ;
272
273 /∗ Use count = 1 , in onode index ∗/
274 onode−>use count = 1 ;
275
276 /∗ Al l o ca t e room fo r onode ∗/
277 // p r i n t f (” onode ind e x i n s e r t \n”) ;
278 onode br = ag a l l o c a t e b l o c k ( index−>disk , 0 , 1 0 , 1 ) ;
279
280 #ifdef DEBUG ONODE INDEX
281 f p r i n t f ( s tde r r , ”ONODE crea t ed at : AG: %d , Sta r t : %d , Len : %d\n”

, onode br−>a l l o c a t i on g r oup , onode br−>s ta r t , onode br−>l en ) ;
282 #endif
283
284 /∗ Write onode to d i s k ∗/
285 b lock = disk newblock ( index−>disk ,BR SECTOR T( index−>disk ,

onode br ) ) ;
286 // memset ( b lock−>data ,0 , index−>disk−>b s i z e ) ;
287 memcpy( block−>data , onode , s izeof ( struct f c f s onode1 ) ) ;
288 d i s k wr i t eb l o ck ( b lock ) ;
289 #ifdef DEBUG ONODE INDEX
290 f p r i n t f ( s tde r r , ”ONODE Written \n” ) ;
291 #endif
292 d i s k f r e e b l o c k ( b lock ) ;
293
294 /∗ Put i t in the index proper l y ∗/
295 node = index−>root ;
296 parent = NULL;
297
298 /∗ Check current node f o r f r e e space / l o c a t i o n ∗/
299 for ( i =0; i<node−>used && node−>i tems [ i ] . key < onode−>onode num ;

i++)
300 ; /∗ FIXME: This shou ld be a b inary

search ∗/
301
302 i f ( i==index−>disk−>sb−>on index node s i z e )
303 i = 0 ;
304
305 node pos = i ; /∗ p o s i t i o n in the node

∗/
306
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307 #ifdef DEBUG ONODE INDEX
308 f p r i n t f ( s tde r r , ”\n\n\ t i = %d\n\n” , i ) ;
309 #endif
310
311 i f ( node−>i tems [ i ] . node b locknr !=0)
312 {
313 /∗ Lookup subtree , see i f node or l e a f ∗/
314 parent = node ;
315 // node = ;
316 b lock = d i s k g e tb l o ck ( index−>disk , node−>i tems [ i ] .

node b locknr ) ;
317 i f (∗ ( ( u64 ∗) block−>data )== FCFS ONODE INDEX LEAF MAGIC1)
318 { /∗ i s a l e a f ∗/
319 #ifdef DEBUG ONODE INDEX
320 f p r i n t f ( s tde r r , ”FOUND A LEAF!\n\n” ) ;
321 #endif
322 l e a f = ( struct f c f s o n o d e i n d e x l e a f ∗ ) block−>data ;
323 #ifdef DEBUG ONODE INDEX
324 f p r i n t f ( s tde r r , ”GOING TO ADD TO LEAF 0x%l l u \n” , l e a f −>

id ) ;
325 f p r i n t f ( s tde r r , ”\ tb l o ck % l l u \n” , l e a f −>block ) ;
326 f p r i n t f ( s tde r r , ”\ tused %l l u \n” , l e a f −>used ) ;
327 #endif
328
329 on od e i nd e x l e a f i n s e r t ( index−>disk , l e a f ,
330 onode−>onode num ,
331 BR SECTOR T( index−>disk ,
332 onode br ) ) ;
333
334 d i s k wr i t eb l o ck ( b lock ) ;
335 parent−>i tems [ node pos ] . key = onode−>onode num ;
336 onode index wr i t e node ( index , parent ) ;
337 index−>disk−>sb−>onindex used++;
338 index−>disk−>sb−>on index f r e e −−;
339 f c f s w r i t e s b ( index−>d i sk ) ;
340 }
341 else i f (∗ ( ( u64 ∗) block−>data )==

FCFS ONODE INDEX NODE MAGIC1)
342 {
343 f p r i n t f ( s tde r r , ”FOUND A NODE!\n\n” ) ;
344 f p r i n t f ( s tde r r , ”∗∗FIXME∗∗ We don ’ t handle nodes yet \n”

) ;
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345 }
346 else
347 {
348 f p r i n t f ( s tde r r , ”WARNING−CORRUPT: node po in t e r po in t s

to corrupt node or l e a f !\ n” ) ;
349 f p r i n t f ( s tde r r , ”\tCORRUPT node−>i tems [%d ] . node b locknr

= % l l u \n” , i , node−>i tems [ i ] . node b locknr ) ;
350 f p r i n t f ( s tde r r , ”\tMAGIC i s % l l x \n” ,∗ ( ( u64 ∗) block−>data

) ) ;
351 abort ( ) ;
352 }
353 d i s k f r e e b l o c k ( b lock ) ;
354 }
355 else
356 {
357 /∗ Create l e a f ∗/
358 l e a f = onode index l ea f new ( index , node , i ) ;
359 l e a f −>i tems [ 0 ] . key = onode−>onode num ;
360 l e a f −>i tems [ 0 ] . onode b locknr = BR SECTOR T( index−>disk ,

onode br ) ;
361 l e a f −>used = 1 ;
362
363 #ifdef DEBUG ONODE INDEX
364 f p r i n t f ( s tde r r , ”LEAF : Should be wr i t ing with key=%l l d ,

b lock=%l l d \n” , l e a f −>i tems [ 0 ] . key , l e a f −>i tems [ 0 ] .
onode b locknr ) ;

365 #endif
366
367 node−>i tems [ i ] . node b locknr = l e a f −>block ;
368 node−>i tems [ i ] . key = onode−>onode num ;
369 node−>used = i +1;
370
371 onode i ndex wr i t e r o o t ( index ) ;
372 on od e i nd e x w r i t e l e a f ( index , l e a f ) ;
373 }
374
375 return onode br ;
376 }
377
378 struct f c f s d i s k b l o c k ∗ onode index lookup ( struct

f c f s onode i ndex ∗ index , struct f c f s b l o c k r u n ∗ onode br , u64
id )
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379 {
380 struct f c f s d i s k b l o c k ∗ block ;
381 struct f c f s d i s k b l o c k ∗ onode block ;
382 struct f c f s onode i ndex node ∗ node ;
383 struct f c f s onode i ndex node ∗ parent ;
384 struct f c f s o n o d e i n d e x l e a f ∗ l e a f ;
385
386 int i ;
387
388 node = index−>root ;
389
390 for ( i =0; i<node−>used && node−>i tems [ i ] . key < id ; i++)
391 ;
392
393 /∗ Lookup subtree , see i f node or l e a f ∗/
394 parent = node ;
395 // node = ;
396 b lock = d i s k g e tb l o ck ( index−>disk , node−>i tems [ i ] . node b locknr ) ;
397 i f (∗ ( ( u64 ∗) block−>data )== FCFS ONODE INDEX LEAF MAGIC1)
398 { /∗ i s a l e a f ∗/
399 f p r i n t f ( s tde r r , ”FOUND A LEAF!\ n\n” ) ;
400 l e a f = ( struct f c f s o n o d e i n d e x l e a f ∗ ) block−>data ;
401 f p r i n t f ( s tde r r , ”READ LEAF 0x%l l u \n” , l e a f −>id ) ;
402 f p r i n t f ( s tde r r , ”\ tb l o ck % l l u \n” , l e a f −>block ) ;
403 f p r i n t f ( s tde r r , ”\ tused %l l u \n” , l e a f −>used ) ;
404 for ( i =0; i<l e a f −>used && l ea f −>i tems [ i ] . key < id ; i++)
405 ;
406 f p r i n t f ( s tde r r , ” l e a f i = %d, % l l u % l l u \n” , i , l e a f −>i tems [ i ] .

key , l e a f −>i tems [ i ] . onode b locknr ) ;
407 onode block = d i s k g e tb l o ck ( index−>disk , l e a f −>i tems [ i ] .

onode b locknr ) ;
408 onode br−>a l l o c a t i o n g r oup = BLOCK AG( index−>disk , l e a f −>

i tems [ i ] . onode b locknr ) ;
409 onode br−>s t a r t = l e a f −>i tems [ i ] . onode b locknr%index−>disk

−>sb−>ag b locksnr ;
410 onode br−>l en = 1 ;
411 d i s k f r e e b l o c k ( b lock ) ;
412 }
413 else
414 abort ( ) ;
415
416 return onode block ;
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417 }
418
419 struct f c f s onode i ndex ∗ onode index de l e t e ( struct

f c f s onode i ndex ∗ index )
420 {
421 i f ( index−>root )
422 d i s k f r e e b l o c k ( index−>r o o t b l o ck ) ;
423 f r e e ( index ) ;
424 index = NULL;
425 return index ;
426 }
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Listing 20: fcfs/mount testkit.c

1 /∗ moun t t e s t k i t . c
2 −−−−−−−−−−−−−−−
3 $Id : moun t t e s t k i t . c , v 1 .2 2003/09/22 09 :03 :26 s t ewar t Exp $

4
5 This i s the code to mount a f c f s volume us ing the t e s t k i t

s t u f f .
6 a b i t icky , but i t shou ld work .
7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GNU Pub l i c License

10 ∗/
11
12 #include < s t d i o . h>
13 #include < s t d l i b . h>
14 #include < sys / s t a t . h>
15 #include <unis td . h>
16 #include < f c n t l . h>
17 #include < s t r i n g . h>
18 #include <time . h>
19
20
21 #include ” t e s t k i t / b lock dev . h”
22 #include ” t e s t k i t / types . h”
23 #include ” t e s t k i t / b i t ops . h”
24 #include ” d i sk . h”
25
26 #include ” super b lo ck . h”
27 #include ”onode . h”
28 #include ” onode index . h”
29 #include ” space bitmap . h”
30
31
32 struct f c f s d i s k ∗ f c f s mount ( char ∗name)
33 {
34 struct b l o ck dev i c e bdev ,∗ bdevproper ;
35 struct f c f s d i s k ∗ disk ,∗ d i skprope r ;
36 struct f c f s d i s k b l o c k ∗ block ;
37 u32 b s i z e ; // b l o c k s i z e ( b y t e s )
38 u64 b locksnr ; // number o f b l o c k s
39
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40 bdevproper = ( struct b l o ck dev i c e ∗) mal loc ( s izeof ( struct
b l o ck dev i c e ) ) ;

41 i f ( bdevproper==NULL)
42 {
43 f p r i n t f ( s tde r r , ”No memory f o r bdevproper\n” ) ;
44 abort ( ) ;
45 }
46
47 b l o c k d e v i n i t ( ) ;
48 block dev new(&bdev , name ,4096 , 1 ) ;
49 d i sk = disk new(&bdev ) ;
50
51 b lock = d i s k g e tb l o ck ( disk , 0 ) ;
52 disk−>sb = ( struct f c f s s b ∗) block−>data ;
53
54 b s i z e = disk−>sb−>bs i z e ;
55 b lock snr = disk−>sb−>b locksnr ;
56
57 /∗ c lean up a f t e r i n i t i a l d e t e c t i on ∗/
58 d i s k f r e e b l o c k ( b lock ) ;
59 d i s k f r e e ( d i sk ) ;
60
61 /∗ Let ’ s use our knowledge to make a proper d i s k ∗/
62 block dev new ( bdevproper , name , bs i ze , b l o ck snr ) ;
63 d i skprope r = disk new ( bdevproper ) ;
64
65 /∗ Put proper supe r b l o c k i n t o d i s k ∗/
66 b lock = d i s k g e tb l o ck ( d i skproper , 0 ) ;
67 disk−>sb b lock = block ;
68 disk−>sb = ( struct f c f s s b ∗) block−>data ;
69
70 f c f s s b ma r k d i r t y ( d i sk ) ;
71
72 return d i sk ;
73 }
74
75 int f c f s umount ( struct f c f s d i s k ∗ d i sk )
76 {
77 f c f s s b ma r k c l e a n ( d i sk ) ;
78 d i s k f r e e b l o c k ( disk−>sb b lock ) ;
79 d i s k f r e e ( d i sk ) ;
80 return 0 ;
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81 }
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Listing 21: fcfs/mkfile.c

1 /∗
2 mk f i l e . c
3 −−−−−−−−
4 Real s t up i d program to make an empty f i l e .
5 Should take advantage o f sparse s t u f f too !
6
7 $Id : mk f i l e . c , v 1 .3 2003/10/12 12 :58 :53 s t ewar t Exp $

8
9 (C) 2003 Stewart Smith

10 Di s t r i b u t e d under the GNU Pub l i c License
11 ∗/
12
13 #include < s t d i o . h>
14 #include < s t d l i b . h>
15 #include <unis td . h>
16 #include < sys / types . h>
17 #include < sys / s t a t . h>
18 #include < f c n t l . h>
19
20 typedef u i n t 6 4 t u64 ;
21
22 u64 atou64 ( const char ∗ nptr )
23 {
24 u64 out , i ;
25 for ( out=0, i =0; nptr [ i ] != ’ \0 ’ ; i++)
26 {
27 out ∗=10;
28 out+=nptr [ i ]− ’ 0 ’ ;
29 }
30
31 return out ;
32 }
33
34 int main ( int argc , char ∗ argv [ ] )
35 {
36 FILE∗ f i l e ;
37
38 i f ( argc <4)
39 {
40 f p r i n t f ( s tde r r , ”Usage :\n” ) ;
41 f p r i n t f ( s tde r r , ”\ t%s f i l e b s i z e b l o ck snr \n\n” , argv [ 0 ] ) ;
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42 e x i t ( 1 ) ;
43 }
44
45 f i l e = fopen ( argv [ 1 ] , ”w” ) ;
46 f s e ek ( f i l e , atou64 ( argv [ 2 ] ) ∗atou64 ( argv [ 3 ] ) ,SEEK SET) ;
47 f p r i n t f ( f i l e , ”%c” ,0 ) ;
48 f c l o s e ( f i l e ) ;
49 return 0 ;
50 }
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Listing 22: fcfs/mkfs.c

1 /∗
2 mkfs . c
3 −−−−−−
4 $Id : mkfs . c , v 1 .23 2003/11/03 19 :29 :16 s t ewar t Exp $

5 (C) 2003 Stewart Smith
6 Di s t r i b u t e d under the GNU Pub l i c License
7
8 This i s the ’ mkfs ’ u t i l i t y f o r FCFS − the new Walnut o b j e c t

s t o r e .
9 The name mkfs i s kep t pure l y ’ cause i t says what i t does .

10
11 Some data s t r u c t u r e s have been cons t ruc t ed out o f t ho se
12 pre sen t in the Linux Kernel ( v2 . 5 . 6 9 ) . They are copy r i g h t
13 o f t h e i r r e s p e c t i v e owners .
14 ∗/
15
16 #include < s t d i o . h>
17 #include < s t d l i b . h>
18 #include < sys / s t a t . h>
19 #include <unis td . h>
20 #include < f c n t l . h>
21 #include < s t r i n g . h>
22 #include <time . h>
23
24
25 #include ” t e s t k i t / b lock dev . h”
26 #include ” t e s t k i t / types . h”
27 #include ” t e s t k i t / b i t ops . h”
28 #include ” d i sk . h”
29
30 #include ” super b lo ck . h”
31 #include ”onode . h”
32 #include ” onode index . h”
33 #include ” space bitmap . h”
34
35 #define EXPERIMENTAL
36
37 u64 atou64 ( const char ∗ nptr )
38 {
39 u64 out , i ;
40 for ( out=0, i =0; nptr [ i ] != ’ \0 ’ ; i++)
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41 {
42 out ∗=10;
43 out+=nptr [ i ]− ’ 0 ’ ;
44 }
45
46 return out ;
47 }
48
49 int make sb (void ∗ sb v , u32 bs i ze , u64 bcount , char ∗ name)
50 {
51 struct f c f s s b ∗ sb = ( struct f c f s s b ∗) sb v ;
52
53 sb−>magic1 = FCFS SB MAGIC1 ;
54 sb−>ve r s i on = FCFS SB VERSION1;
55 sb−>b i t s = 64 ;
56 sb−>sb length = s izeof ( struct f c f s s b ) ;
57 sb−>f l a g s = 0 ;
58 s e t b i t (FCFS FLAG JournalMeta ,&( sb−>f l a g s ) ) ;
59 #ifdef EXPERIMENTAL
60 s e t b i t (FCFS FLAG Experimental ,&( sb−>f l a g s ) ) ;
61 #endif
62
63 sb−>bs i z e = bs i z e ;
64 sb−>b locksnr = bcount ;
65 s t r cpy ( sb−>name , name) ;
66 sb−>magic2 = FCFS SB MAGIC2 ;
67
68 sb−>t ime c r ea t ed = time (NULL) ;
69 sb−>t ime c l ean = time (NULL) ;
70 sb−>t ime dirtymount = 0x0ULL ;
71
72 sb−>num mounts = 0x0ULL ;
73 sb−>num dirtymounts = 0x0ULL ;
74
75 /∗ We simply s t e a l the number o f a l l o c a t i o n groups from XFS . : )
76 They use 8 , so we ’ l l s t e a l t h a t .
77 ∗/
78 sb−>a l l o c a t i o n g r oup s n r = 8 ;
79 sb−>ag b locksnr = bcount / sb−>a l l o c a t i o n g r oup s n r ;
80
81 f p r i n t f ( s tde r r , ”ALLOCATION GROUPS: 0 x%x , each 0 x%x\n” ,
82 sb−>a l l o c a t i on g r oup sn r ,
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83 sb−>ag b locksnr ) ;
84
85 sb−>onindex num onodes = 0 ; /∗ Num onodes in index ∗/
86 sb−>onindex used = 0 ; /∗ Num of used inodes in index ∗/
87 sb−>on index f r e e = 0 ; /∗ Num of f r e e onodes in index ∗/
88 sb−>on index next id = 0 ; /∗ Next ID to use ∗/
89
90 /∗ FIXME: Po t e n t i a l l y do r e a l nas ty t h i n g s t h a t can ’ t be

d e s c r i b e d
91 ∗ in p o l i t e c i r c l e s when our s t r u c t s change s i z e . . . ∗/
92 sb−>on index node s i z e = ( ( sb−>bs i z e − 4∗ s izeof ( u64 ) ) / s izeof (

u64 ) ) /2 ;
93 /∗ In number o f keys ∗/
94
95 return 1 ; /∗ success , a l t hough we don ’ t

check i t ∗/
96 }
97
98 int wr i t e supe rb l o ck s ( struct f c f s d i s k ∗ d i sk )
99 {

100 struct f c f s d i s k b l o c k ∗ block ;
101 u32 i ;
102
103 /∗ Write s t a r t o f volume master SB ∗/
104 b lock = d i s k g e tb l o ck ( disk , 0 ) ;
105
106 disk−>sb−>f l a g s = disk−>sb−>f l a g s | FCFS SBloc start volume ;

/∗ s t a r t o f volume ∗/
107
108 d i s k wr i t eb l o ck ( b lock ) ;
109 d i s k f r e e b l o c k ( b lock ) ;
110 f p r i n t f ( s tde r r , ”SuperBlock at Block 0\n” ) ;
111
112 /∗ Write end o f volume Backup SB ∗/
113 b lock = disk newblock ( disk , disk−>blocksnr −1ULL) ;
114
115
116 // disk−>sb−>f l a g s = disk−>sb−>f l a g s & ˜0x03ULL ;
117 disk−>sb−>f l a g s = disk−>sb−>f l a g s ˆ FCFS SBloc start volume ;

/∗ s t a r t o f volume ∗/
118 disk−>sb−>f l a g s = disk−>sb−>f l a g s | FCFS SBloc end volume ; /∗

end o f volume ∗/
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119
120 memcpy( block−>data , disk−>sb , disk−>bs i z e ) ;
121
122 d i s k wr i t eb l o ck ( b lock ) ;
123 d i s k f r e e b l o c k ( b lock ) ;
124 f p r i n t f ( s tde r r , ”BACKUP SuperBlock at Block 0 x%l l x \n” , disk−>

blocksnr −1ULL) ;
125
126 disk−>sb−>f l a g s = disk−>sb−>f l a g s ˆ FCFS SBloc end volume ; /∗

end o f volume ∗/
127
128 for ( i =1; i<disk−>sb−>a l l o c a t i o n g r oup s n r ; i++)
129 {
130 b lock = disk newblock ( disk , i ∗disk−>sb−>ag b locksnr ) ;
131
132 disk−>sb−>f l a g s = disk−>sb−>f l a g s | FCFS SBloc start ag ;

/∗ s t a r t o f ag∗/
133 memcpy( block−>data , disk−>sb , disk−>bs i z e ) ;
134 d i s k wr i t eb l o ck ( b lock ) ;
135 d i s k f r e e b l o c k ( b lock ) ;
136 f p r i n t f ( s tde r r , ”BACKUP SuperBlock at Block 0 x%l l x ( o f f s e t 0

x%l l x ) \n” , i ∗disk−>sb−>ag b locksnr , ( i ∗disk−>sb−>

ag b locksnr ) ∗disk−>bs i z e ) ;
137 }
138 return 0 ;
139 }
140
141 int wr i t e b l o ck b i tmaps ( struct f c f s d i s k ∗ d i sk )
142 {
143 struct f c f s d i s k b l o c k ∗ block ;
144 struct f c f s b l o c k r u n br ;
145 int i , j ;
146
147 /∗ Create i n i t i a l empty Block Bitmap ∗/
148 for ( i =0; i <(disk−>sb−>a l l o c a t i o n g r oup s n r ) ; i++)
149 {
150 /∗ For each ag , b lank one o f the r i g h t s i z e ∗/
151 for ( j =0; j<space b i tmap s i z e ( disk−>sb , i ) ; j++)
152 {
153 b lock = disk newblock ( disk , i ∗disk−>sb−>ag b locksnr+2) ;
154 memset ( block−>data , 0 , d isk−>bs i z e ) ;
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155 f p r i n t f ( s tde r r , ”BITMAP: Zeroing 0 x%x ( o f f s e t %x) length
%u\n” ,

156 i ∗disk−>sb−>ag b locksnr +2,
157 ( i ∗disk−>sb−>ag b locksnr+2)∗disk−>bs ize ,
158 space b i tmap s i z e ( disk−>sb , i ) ) ;
159 d i s k wr i t eb l o ck ( b lock ) ;
160 d i s k f r e e b l o c k ( b lock ) ;
161 }
162 }
163
164 for ( i =0; i <(disk−>sb−>a l l o c a t i o n g r oup s n r ) ; i++)
165 {
166 /∗ Setup our Block Run ∗/
167 br . a l l o c a t i o n g r oup = i ;
168 br . s t a r t = 1 ;
169 br . l en = space b i tmap s i z e ( disk−>sb , i ) ;
170
171 spa c e b i tmap a l l o c a t e b l o ck ( disk , i , 0 ) ;
172
173 for ( j =0; j<space b i tmap s i z e ( disk−>sb , i ) ; j++)
174 spa c e b i tmap a l l o c a t e b l o ck ( disk , i , j +1) ;
175
176 }
177
178 return 0 ;
179 }
180
181 int main ( int argc , char ∗ argv [ ] )
182 {
183 struct b l o ck dev i c e bdev ;
184 struct f c f s d i s k ∗ d i sk ;
185 struct f c f s d i s k b l o c k ∗ block ;
186 struct f c f s s b ∗ sb ;
187 struct f c f s onode i ndex ∗ index ;
188 u64 b s i z e ;
189 u64 bcount ;
190 char ∗ bu f f e r ;
191 int i ;
192
193 i f ( argc <5)
194 {
195 f p r i n t f ( s tde r r , ”FCFS Make Object Store U t i l i t y ( mkfs ) \n” ) ;
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196 f p r i n t f ( s tde r r , ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
197 f p r i n t f ( s tde r r , ” $Id : mkfs . c , v 1 . 2 3 2003/11/03 19 : 2 9 : 1 6

stewart Exp $\n\n” ) ;
198 f p r i n t f ( s tde r r , ”Written by : Stewart Smith (

stewart@f lamingspork . com) \n\n” ) ;
199 f p r i n t f ( s tde r r , ”Usage :\n\ t . / mkfs dev i c e b l o c k s i z e

blockcount name [ i n i t i a l ob j e c t s ]\n\n” ) ;
200 e x i t ( 0 ) ;
201 }
202
203 b s i z e = atou64 ( argv [ 2 ] ) ;
204 bcount = atou64 ( argv [ 3 ] ) ;
205
206 f p r i n t f ( s tde r r , ”Going to c r e a t e volume ’% s ’ with 0 x%l l x b lock s

at 0 x%l l x bytes each \n\n” , argv [ 4 ] , bcount , b s i z e ) ;
207
208 b l o c k d e v i n i t ( ) ;
209 block dev new(&bdev , argv [ 1 ] , bs i ze , bcount ) ;
210 d i sk = disk new(&bdev ) ;
211
212 i f ( ( bu f f e r = ( char∗) mal loc ( s izeof ( char∗) ∗ bs i z e ) )==0)
213 {
214 f p r i n t f ( s tde r r , ”Unable to a l l o c a t e bu f f e r \n” ) ;
215 abort ( ) ;
216 }
217
218 /∗ Make a new Super Block ∗/
219 b lock = disk newblock ( disk , 0 ) ;
220 sb = ( struct f c f s s b ∗) block−>data ;
221
222 i f ( ! make sb ( sb , disk−>bs ize , d isk−>blocksnr , argv [ 4 ] ) )
223 {
224 f p r i n t f ( s tde r r , ”Make sb f a i l e d \n” ) ;
225 abort ( ) ;
226 }
227
228 disk−>sb = sb ;
229
230 wr i t e supe rb l o ck s ( d i sk ) ;
231
232 wr i t e b l o ck b i tmaps ( d i sk ) ;
233
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234 index = onode index new ( d i sk ) ;
235 onode index new root ( index ) ;
236
237 for ( i =5; i<argc ; i++)
238 {
239 struct f c f s onode1 ∗ node ;
240 struct f c f s b l o c k r u n ∗ onode br ;
241 int f o rknr ;
242 char data [ 1 0 2 4 ] ; int j ;
243 FILE∗ a ;
244
245 node = onode1 new ( d i sk ) ;
246 onode br = onode i ndex i n s e r t ( index , node ) ;
247 // onode1 grow ( d isk , onode br ,10 ) ;
248 // onode1 grow ( d isk , onode br ,20 ) ;
249 onode1 fork new ( disk , onode br , 0 x42 , s t r l e n ( argv [ i ] ) , argv [ i ] , 1 )

;
250 fo rknr = onode1 fork new ( disk , onode br , 0 x69 , 0 ,NULL, 0 ) ;
251 f p r i n t f ( s tde r r , ”+++++++GOING TO GO AND WRITE %s++++++++\n” ,

argv [ 5 ] ) ;
252 a = fopen ( argv [ i ] , ” r ” ) ;
253 j =0;
254 while ( ! f e o f ( a ) )
255 {
256 f g e t s ( data , 1000 , a ) ;
257 f p r i n t f ( s tde r r , ”∗∗∗∗∗∗∗WRITING %d bytes ∗∗∗∗∗∗∗\n” , s t r l e n (

data ) ) ;
258 onode1 fo rk wr i t e ( disk , onode br , forknr , j , ( u64 ) s t r l e n ( data

) , data ) ;
259 j+=s t r l e n ( data ) ;
260 }
261 f c l o s e ( a ) ;
262 }
263
264 d i s k f r e e b l o c k ( b lock ) ;
265
266 /∗ Clean up and e x i t ∗/
267 b l o c k d e v c l o s e (&bdev ) ;
268
269 return 0 ;
270 }
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Listing 23: fcfs/volinfo.c

1 /∗ v o l i n f o . c
2 −−−−−−−−−
3
4 Dumps a l o t o f in format ion about a volume to the conso l e .
5
6 $Id : v o l i n f o . c , v 1 .7 2003/09/22 09 :05 :18 s t ewar t Exp $

7
8 (C) 2003 Stewart Smith
9 Di s t r i b u t e d under the GNU Pub l i c License

10 ∗/
11
12 // Block Device i n c l u d e s
13 #include ” t e s t k i t / types . h”
14 #include ” t e s t k i t / b lock dev . h”
15 #include ” t e s t k i t / b i t ops . h”
16 #include ” d i sk . h”
17
18 // UNIX inc l ud e s
19 #include < s t d i o . h>
20 #include < s t d l i b . h>
21 #include < sys / s t a t . h>
22 #include <unis td . h>
23 #include < f c n t l . h>
24 #include < s t r i n g . h>
25
26 // FCFS Inc lude s
27 #include ” super b lo ck . h”
28 #include ”onode . h”
29 #include ” onode index . h”
30 #include ” space bitmap . h”
31
32 void p r i n t s b f l a g s ( struct f c f s s b ∗ sb , int d e s i r e d l o c )
33 {
34 i f ( ( sb−>f l a g s & 0 x03 ) != d e s i r e d l o c )
35 p r i n t f ( ”WARNING−CORRUPT: ” ) ;
36 i f ( ( sb−>f l a g s & 0 x03 ) == FCFS SBloc start volume )
37 p r i n t f ( ”This i s the s t a r t o f a volume\n” ) ;
38 else
39 i f ( ( sb−>f l a g s & 0 x03 ) == FCFS SBloc end volume )
40 p r i n t f ( ”This i s the End o f a volume\n” ) ;
41 else
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42 i f ( ( sb−>f l a g s & 0 x03 ) == FCFS SBloc start ag )
43 p r i n t f ( ”This i s the s t a r t o f an A l l o c a t i on Group\n” ) ;
44 else
45 p r i n t f ( ”Volume i s corrupt − unknown Super Block Locat ion \

n” ) ;
46
47 p r i n t f ( ”FLAGS: 0 x%l l x \n” , sb−>f l a g s ) ;
48
49 i f ( t e s t b i t (FCFS FLAG Dirty,&sb−>f l a g s ) )
50 p r i n t f ( ”\ t− Volume i s Dirty \n” ) ;
51 i f ( t e s t b i t (FCFS FLAG Experimental ,&sb−>f l a g s ) )
52 p r i n t f ( ”\ t− Volume has been used by EXPERIMENTAL code . I t ’ s

probably b0rked .\ n” ) ;
53 i f ( t e s t b i t (FCFS FLAG JournalMeta,&sb−>f l a g s ) )
54 p r i n t f ( ”\ t− Volume j ou rna l s Meta Data\n” ) ;
55 i f ( t e s t b i t (FCFS FLAG JournalData ,&sb−>f l a g s ) )
56 p r i n t f ( ”\ t− Volume j ou rna l s Data\n” ) ;
57 i f ( t e s t b i t (FCFS FLAG Versioned ,&sb−>f l a g s ) )
58 p r i n t f ( ”\ t− Volume i s Vers ioned \n” ) ;
59 }
60
61 int pr i n t sb ( struct f c f s d i s k ∗ d i sk )
62 {
63 struct f c f s d i s k b l o c k ∗ block , ∗ block2 ;
64 struct f c f s s b ∗ sb , ∗ sb2 ;
65
66
67 b lock = d i s k g e tb l o ck ( disk , 0 ) ;
68 sb = ( struct f c f s s b ∗) block−>data ;
69 i f ( sb−>magic1 !=FCFS SB MAGIC1)
70 f p r i n t f ( s tde r r , ”WARNING: Primary SB MAGIC1 mismatch . Corrupt

Volume .\ n” ) ;
71 i f ( sb−>magic2 !=FCFS SB MAGIC2)
72 f p r i n t f ( s tde r r , ”WARNING: Primary SB MAGIC2 mismatch . Corrupt

Volume .\ n” ) ;
73 i f ( sb−>b i t s !=64)
74 f p r i n t f ( s tde r r , ”WARNING: Weird number o f f i l e s y s t em base b i t s

. Corrupt Volume .\n” ) ;
75 i f ( sb−>ve r s i on !=FCFS SB VERSION1)
76 f p r i n t f ( s tde r r , ”WARNING: Unknown Vers ion o f FS & SB.\n” ) ;
77
78 p r i n t f ( ”Primary Superblock\n” ) ;
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79 p r i n t f ( ”−−−−−−−−−−−−−−−−−−\n” ) ;
80 p r i n t f ( ”Volume name i s : % s \n” , sb−>name) ; /∗ FIXME: CHECK NAME

! ! ! ∗/
81 p r i n t f ( ”MAGIC1 : 0x%x\tMAGIC2 : 0 x%x\nVERSION: 0 x%x\tBITS : %u\ t

LENGTH: %u bytes \n” , sb−>magic1 , sb−>magic2 , sb−>vers ion , sb−>

b i t s , sb−>sb length ) ;
82 p r i n t f ( ”Block S i z e : %u\tNo . Blocks : % l l u \n” , sb−>bs ize , sb−>

b locksnr ) ;
83
84 // sb f l a g s
85 p r i n t s b f l a g s ( sb , FCFS SBloc start volume ) ;
86
87 p r i n t f ( ”Number o f Clean Mounts : %l l u \n” , sb−>num mounts ) ;
88 p r i n t f ( ”Number o f UnClean Mounts : % l l u \n” , sb−>num dirtymounts ) ;
89 p r i n t f ( ”Time Created : %l l u \n” , sb−>t ime c r ea t ed ) ;
90 p r i n t f ( ”Time l a s t c l e an l y mounted:% l l u \n” , sb−>t ime c l ean ) ;
91 p r i n t f ( ”Time l a s t d i r t y mounted : %l l u \n” , sb−>t ime dirtymount ) ;
92
93 p r i n t f ( ”\n” ) ;
94
95 p r i n t f ( ”Onode Index :\ n” ) ;
96 p r i n t f ( ”−−−−−−−−−−−−\n” ) ;
97 p r i n t f ( ”ONode Index l o c a t i o n : % l l u \n” , sb−>onode index b locknr ) ;
98 p r i n t f ( ”Number o f onodes : % l l u used , % l l u ava i l ab l e , % l l u t o t a l

\n” ,
99 sb−>onindex used ,

100 sb−>on index f r e e ,
101 sb−>onindex num onodes ) ;
102 p r i n t f ( ”Next ID: % l l u \ tNode S i z e : % lu \n” ,
103 sb−>on index next id ,
104 sb−>on index node s i z e ) ;
105
106
107 block2 = d i s k g e tb l o ck ( disk , disk−>blocksnr −1) ;
108 sb2 = ( struct f c f s s b ∗) block2−>data ;
109
110 p r i n t f ( ”\n\nChecking end o f d i sk super b lock backup . . . \ n” ) ;
111
112 i f ( sb2−>magic1 !=sb−>magic1 )
113 p r i n t f ( ”WARNING−CORRUPT: End o f d i sk SB magic1 i s i n c o r r e c t 0

x%x\n” , sb2−>magic1 ) ;
114 i f ( sb2−>magic2 !=sb−>magic2 )
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115 p r i n t f ( ”WARNING−CORRUPT: End o f d i sk SB magic2 i s i n c o r r e c t 0
x%x\n” , sb2−>magic2 ) ;

116 i f ( sb2−>ve r s i on !=sb−>ve r s i on )
117 p r i n t f ( ”WARNING−CORRUPT: End o f d i sk SB ve r s i on d i f f e r s 0 x%x\

n” , sb2−>ve r s i on ) ;
118 i f ( sb2−>b i t s !=sb−>b i t s )
119 p r i n t f ( ”WARNING−CORRUPT: End o f d i sk SB b i t s d i f f e r %u\n” , sb2

−>b i t s ) ;
120 i f ( sb2−>sb length !=sb2−>sb length )
121 p r i n t f ( ”WARNING−CORRUPT: End o f d i sk SB length d i f f e r s %u\n” ,

sb2−>sb length ) ;
122
123 p r i n t s b f l a g s ( sb2 , FCFS SBloc end volume ) ;
124
125 i f ( ( sb2−>f l a g s & (˜0x03ULL) ) !=( sb−>f l a g s & (˜0x03ULL) ) )
126 {
127 p r i n t f ( ”WARNING−CORRUPT: End o f d i sk SB f l a g s d i f f e r \n” ) ;
128 p r i n t f ( ”End o f Disk SB FLAGS: 0 x%l l x 0x%l l x \n” , sb2−>f l a g s

, ( sb2−>f l a g s & (˜0x03ULL) ) ) ;
129 }
130
131 i f ( sb2−>bs i z e !=sb−>bs i z e )
132 p r i n t f ( ”WARNING−CORRUPT: Block s i z e d i f f e r s %u vs %u\n” , sb−>

bs ize , sb2−>bs i z e ) ;
133 i f ( sb2−>b locksnr !=sb−>b locksnr )
134 p r i n t f ( ”WARNING−CORRUPT: Number o f b l o ck s d i f f e r s % l l u vs %

l l u \n” , sb−>blocksnr , sb2−>b locksnr ) ;
135
136 i f ( strcmp ( sb2−>name , sb−>name) !=0)
137 p r i n t f ( ”WARNING−CORRUPT: Volume names d i f f e r .\n” ) ;
138
139 d i s k f r e e b l o c k ( block2 ) ;
140
141 d i s k f r e e b l o c k ( b lock ) ;
142 }
143
144 int pr i n t u s ed b l o ck s ( struct f c f s d i s k ∗ d i sk )
145 {
146 int ag , blk ;
147 struct f c f s d i s k b l o c k ∗ block ;
148 struct f c f s s b ∗ sb ;
149
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150 b lock = d i s k g e tb l o ck ( disk , 0 ) ;
151 sb = ( struct f c f s s b ∗) block−>data ;
152
153 p r i n t f ( ”Checking used b locks . . . \ n” ) ;
154 p r i n t f ( ”−−−−−−−−−−−−−−−−−−−−−−−” ) ;
155
156 for ( ag=0;ag<sb−>a l l o c a t i o n g r oup s n r ; ag++)
157 {
158 p r i n t f ( ”\nAG %u : ” , ag ) ;
159 for ( blk =0;blk<sb−>ag b locksnr ; blk++)
160 i f ( ! a g b l o c k f r e e ( disk , ag , blk ) )
161 p r i n t f ( ”%u , ” , blk ) ;
162 }
163 p r i n t f ( ”\n” ) ;
164 return 0 ;
165 }
166
167 int p r i n t o n od e i nd e x l e a f ( struct f c f s d i s k ∗ disk , u64 b locknr )
168 {
169 struct f c f s d i s k b l o c k ∗ block ;
170 struct f c f s o n o d e i n d e x l e a f ∗ l e a f ;
171 int i ;
172
173 b lock = d i s k g e tb l o ck ( disk , b locknr ) ;
174 l e a f = ( struct f c f s o n o d e i n d e x l e a f ∗ ) block−>data ;
175
176 i f ( l e a f −>magic1 !=FCFS ONODE INDEX LEAF MAGIC1)
177 p r i n t f ( ”WARNING−CORRUPT: Bad onode i ndex l e a f MAGIC1\n” ) ;
178 p r i n t f ( ”\tOnode Index LEAF: % l l u in b lock % l l u \n” , l e a f −>id , l e a f

−>block ) ;
179 p r i n t f ( ”\ tUsed : % l l u/%lu \n” , l e a f −>used , disk−>sb−>

on index node s i z e ) ;
180 p r i n t f ( ”\ t key : b lock \n” ) ;
181 for ( i =0; i<l e a f −>used ; i++)
182 p r i n t f ( ”\ t %l l u :% l l u \n” , l e a f −>i tems [ i ] . key ,
183 l e a f −>i tems [ i ] . onode b locknr ) ;
184
185 d i s k f r e e b l o c k ( b lock ) ;
186 return 0 ;
187 }
188
189 int pr in t onode index ( struct f c f s d i s k ∗ d i sk )
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190 {
191 struct f c f s d i s k b l o c k ∗ block ;
192 struct f c f s onode i ndex node ∗ index node ;
193 int i ;
194
195 b lock = d i s k g e tb l o ck ( disk , disk−>sb−>onode index b locknr ) ;
196
197 index node = ( struct f c f s onode i ndex node ∗) block−>data ;
198 i f ( index node−>magic1 !=FCFS ONODE INDEX NODE MAGIC1)
199 p r i n t f ( ”WARNING−CORRUPT: Bad onode index node MAGIC1\n” ) ;
200 p r i n t f ( ”Onode Index Node: % l l u in b lock % l l u \n” , index node−>id ,

index node−>block ) ;
201 i f ( disk−>sb−>onode index b locknr != index node−>block )
202 p r i n t f ( ”WARNING−CORRUPT: onode index node−>block != sb−>

onode index b locknr \n” ) ;
203 p r i n t f ( ”Used : % l l u/%lu \n” , index node−>used , disk−>sb−>

on index node s i z e ) ;
204 p r i n t f ( ” key : b lock \n” ) ;
205 for ( i =0; i<index node−>used ; i++)
206 p r i n t f ( ” %l l u :% l l u \n” , index node−>i tems [ i ] . key ,
207 index node−>i tems [ i ] . node b locknr ) ;
208
209 for ( i =0; i<index node−>used ; i++)
210 p r i n t o n od e i nd e x l e a f ( disk , index node−>i tems [ i ] . node b locknr

) ;
211
212 d i s k f r e e b l o c k ( b lock ) ;
213 return 0 ;
214 }
215
216 int main ( int argc , char ∗ argv [ ] )
217 {
218 struct b l o ck dev i c e bdev ;
219 struct f c f s d i s k ∗ d i sk ;
220 struct f c f s d i s k b l o c k ∗ block ;
221
222 i f ( argc <4)
223 {
224 f p r i n t f ( s tde r r , ”FCFS Volume In fo U t i l i t y ( v o l i n f o ) \n” ) ;
225 f p r i n t f ( s tde r r , ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n” ) ;
226 f p r i n t f ( s tde r r , ” $Id : v o l i n f o . c , v 1 . 7 2003/09/ 2 2 09 : 0 5 : 1 8

stewart Exp $\n\n” ) ;
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227 f p r i n t f ( s tde r r , ”Written by : Stewart Smith (
stewart@f lamingspork . com) \n\n” ) ;

228 f p r i n t f ( s tde r r , ”Usage :\n\ t . / v o l i n f o dev i c e b l o c k s i z e
blockcount \n\n” ) ;

229 e x i t ( 0 ) ;
230 }
231
232 b l o c k d e v i n i t ( ) ;
233 block dev new(&bdev , argv [ 1 ] , a t o i ( argv [ 2 ] ) , a t o i ( argv [ 3 ] ) ) ;
234 d i sk = disk new(&bdev ) ;
235
236 b lock = d i s k g e tb l o ck ( disk , 0 ) ;
237 disk−>sb = ( struct f c f s s b ∗) block−>data ;
238
239 p r i n t sb ( d i sk ) ;
240
241 p r i n t u s ed b l o ck s ( d i sk ) ;
242
243 pr in t onode index ( d i sk ) ;
244
245 /∗ Clean up and e x i t ∗/
246 b l o c k d e v c l o s e (&bdev ) ;
247
248 return 0 ;
249 }
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Listing 24: fcfs/fcfs newobj.c

1 /∗
2 f c f s n ewo b j . c
3 −−−−−−−−−−−−−
4
5 Program tha t i n s e r t s an o b j e c t onto an FCFS volume
6 from a unix f i l e .
7
8 $Id : f c f s n ewo b j . c , v 1 .5 2003/10/20 07 :18 :11 s t ewar t Exp $

9
10 (C) 2003 Stewart Smith
11 Di s t r i b u t e d under the GPL
12 ∗/
13
14 #include < s t d i o . h>
15 #include < s t d l i b . h>
16 #include < sys / s t a t . h>
17 #include <unis td . h>
18 #include < f c n t l . h>
19 #include < s t r i n g . h>
20 #include <time . h>
21
22
23 #include ” t e s t k i t / b lock dev . h”
24 #include ” t e s t k i t / types . h”
25 #include ” t e s t k i t / b i t ops . h”
26 #include ” d i sk . h”
27
28 #include ” super b lo ck . h”
29 #include ”onode . h”
30 #include ” onode index . h”
31 #include ” space bitmap . h”
32 #include ” f c f s v f s . h”
33
34 #define EXPERIMENTAL
35
36 int main ( int argc , char ∗ argv [ ] )
37 {
38 struct f c f s d i s k ∗ d i sk ;
39 struct f c f s onode i ndex ∗ index ;
40 int i ;
41
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42 i f ( argc <3)
43 {
44 f p r i n t f ( s tde r r , ” f c f s n ewob j \n” ) ;
45 f p r i n t f ( s tde r r , ”−−−−−−−−−−−\n” ) ;
46 f p r i n t f ( s tde r r , ” $Id : f c f s n ewob j . c , v

1 . 5 2003/10/2 0 07 : 1 8 : 1 1 stewart Exp $\n” ) ;
47 f p r i n t f ( s tde r r , ”Usage :\n” ) ;
48 f p r i n t f ( s tde r r , ”\ t%s volume f i l e [ f i l e 2 . . . ] \ n\n” , argv [ 0 ] ) ;
49 e x i t ( 1 ) ;
50 }
51
52 d i sk = fc f s mount ( argv [ 1 ] ) ;
53
54 index = onode index read ( d i sk ) ;
55 for ( i =2; i<argc ; i++)
56 {
57 struct f c f s onode1 ∗ node ;
58 struct f c f s b l o c k r u n ∗ onode br ;
59 int f o rknr ;
60 char data [ 8 2 0 0 ] ; int j ;
61 int i n f i l e ;
62 int r l e n ;
63 struct s t a t s t a tbu f ;
64
65 node = onode1 new ( d i sk ) ;
66 onode br = onode i ndex i n s e r t ( index , node ) ;
67
68 i n f i l e = open ( argv [ i ] ,O RDONLY) ;
69 f s t a t ( i n f i l e ,& s t a tbu f ) ;
70
71 /∗ UNIX source F i l e name f o r k ∗/
72 onode1 fork new ( disk , onode br , 0 x42 , s t r l e n ( argv [ i ] ) , argv [ i ] , 1 )

;
73
74 /∗ Current r e v i s i o n f o r k ∗/
75 fo rknr = onode1 fork new ( disk , onode br , 0 x69 , s t a tbu f . s t s i z e ,

NULL, 0 ) ;
76 onode1 fork new ( disk , onode br , 0 x6A , 0 ,NULL, 0 ) ; /∗ Revis ion

h i s t o r y f o r k ∗/
77 onode1 fork new ( disk , onode br , 0 x6B , 0 ,NULL, 0 ) ; /∗ Revis ion

h i s t o r y data f o r k ∗/
78
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79 f p r i n t f ( s tde r r , ”%s in fo rk %d\n” , argv [ i ] , f o rknr ) ;
80
81 j =0;
82 while (0 < ( r l e n = read ( i n f i l e , data , 8192 ) ) )
83 {
84 // f p r i n t f ( s t de r r ,”∗∗∗∗∗∗∗WRITING %d by t e s ∗∗∗∗∗∗∗\n

” , r l en ) ;
85 onode1 fo rk wr i t e ( disk , onode br , forknr , j , ( u64 ) r l en , data ) ;
86 j+=r l en ;
87 }
88 c l o s e ( i n f i l e ) ;
89 f r e e ( node ) ;
90 f r e e ( onode br ) ;
91 }
92
93 fc f s umount ( d i sk ) ;
94
95 return 0 ;
96 }


