
A Data Object Store for the Walnut Kernel

Walnut Kernel

Stewart Smith
sesmith@csse.monash.edu.au

Supervisors: Ron Pose and Carlo Kopp

1

• Background

• Existing Data Storage

• Walnut Data Storage

• Consistency

• Aims

• Approaches to implementation

• Status

To be covered

Skip quickly over, not really very interesting
2

Background

3

• File Systems

• FFS, LFS, UFS, FAT, NTFS, ext, ext2, ext3,
reiserfs, xfs, jfs, HFS, HFS+, BeFS, WinFS

• Databases

• Relational, Object

Data Storage

File Systems: file & directory concept. Users familiar with. implemented in many
different ways.
BeFS and WinFS stand out as being a little different: BeFS has indexes of attributes on
FS objects.
Databases have imposed strict structure on data, not too useful as generic data
storage systems.

4

• A persistent, password-capability Operating
System

• Memory is a cache for on-disk objects

• Developed at Monash

• Runs on PCs

• Messy code, cool ideas

What Is Walnut?

Persistence: EVERYTHING is preserved across reboots
i.e. “Save” is no longer needed, it’s automatic. But with versioning support, you can
backtrack :)

5

• Object = File, referenced by globally unique
ID, not a name

• Everything on Walnut is an object

• Processes

• Data

• concept of filenames/directories

• userspace nameserver (not kernel)

Walnut Data Storage

object: referenced like inode on unix
nameserver similar to DNS system. give it a name, it gives you an ID.

6

• Objects are mapped into a processes
address space

• there are no read() or write() syscalls

• all IO is done on objects in memory, via
CPU instructions

• Periodically, data is flushed to disk

Walnut Data Storage

File IO vs LOAD/STORE
7

Comparison
UNIX Walnut

FILE *a;
char buffer[100];
a = fopen(”blogs”,”r”);
fgets(a,buffer,100);

char *buffer;
buffer = load_cap(cap);

really a great big lie of a mock up :)
8

• Object contents and kernel internal data

• Attribute => Data

• One large attribute, rest are meta-data

• I won’t worry about details

• assume an object is several attributes

What does Walnut
Store?

9

Consistency Example:
A simple Program

1. Create Pointer
2. Create Object 2
3. Store Data
4. pointer=Object2

This is purely a conceptual model, it is not a reflection on how
Walnut processes should (or can) do things. 10

Scenario

• Program running

• Power Failure

• System restarted

• Program resumes where it left off

• ‘cause we’re persistent!

11

Inter-object
Relationships

Object 1 Object 2

*pointer blah blah blah
blah blah blerg

1. Create Pointer
2. Create Object 2
3. Store Data
4. pointer=Object2

this will appear step by step
12

What could go wrong
when restoring?

• Operations committed out-of-order

• Image on disk won’t match an active state

i.e. what’s on disk never happened.
13

When things go wrong

Object 1 Object 2

blah blah blah
blah ZVBXRPL

1. Create Pointer
2. Create Object 2
3. Store Data

Didn’t finish writing data properly, didn’t
commit pointer creation.

didn’t finish writing data properly, didn’t commit pointer creation.
14

Worse

Object 1

*pointer

1. Create Pointer
2. Create Object 2
3. Store Data

didn’t commit create object. didn’t commit
store data

didn’t commit create object. didn’t commit store data
15

Good

Object 1

*pointer

1. Create Pointer

We can at least continue to work, even though we’ve lost a bit of work, we can
recover it.

16

Even Better

Object 1 Object 2

*pointer blah blah blah
blah blah blerg

1. Create Pointer
2. Create Object 2
3. Store Data

We’ve got more work saved, less we have to redo.
17

Consistency

• Order of objects being flushed matters!

• Inconsistency hard to detect, easy to notice

• i.e. it screws up

18

How would you detect
this? (hint: you can’t)

Object 1

*pointer

1. Create Pointer
2. Create Object 2
3. Store Data

a process would have no hope of working out that this happened between
instructions.

a process would have no hope of working out that this happened between
instructions.

19

• MUST be able to be a primary data store

• MUST be data consistent after crash

• MUST deal with inter-object dependencies

• This is what I’m aiming to design and
implement

Walnut Data Store
Requirements

20

Aims

21

To implement an Object Store for the Walnut Kernel,
which ensures consistency of objects and allows for
revision tracking.

• Design down to on-disk format

• How things appear on disk

• block-by-block

• Include “policy” on use of on-disk format

• how to manipulate on-disk structures

22

• Simulate Kernel environment in user space

• file as block device

• Easily movable to kernel

• Move to raw block device & kernel

• hopefully with Linux FS interface (for
testing)

Testing

23

• Purely for testing. i.e. a hack.

• use a walnut object to contain directory
listing

• much like traditional UNIX FS and how a
Walnut nameserver may work.

Linux FS Interface

24

Directory Object
(id=100)

Name Object ID

. 100

.. 57

buffy 105

willow 1

Example Directory Object (this would be a directory file in a traditional unix system.)
25

Approaches

26

• Update disk after every CPU instruction

• slow

• Halt system while dirty objects are flushed

• everything stops for a few seconds

• Buy a UPS and shutdown cleanly

Bad Solutions

27

• Databases use them to ensure consistency

• simple concept (begin + rollback || commit)

• Either completes successfully or not at all

• used internally in modern filesystems

• On main memory?

Possibility: Transactions

how do we define a programmers interface to transactions on main memory? Do we
force explicit calls?
Could look at it as the “flush to disk” is a transaction.

28

• Tracks meta-data dependencies

• alternative to journalling

• Carefully orders commit to disk

• ensure consistency

• Theory possibly quite useful for Walnut

BSD FFS Soft-Updates

29

• RCS/CVS style! (or a simplification)

• Possible by-product of transactions

• Useful when dirty objects exceed phsyical
RAM

• CONSISTENT revision tags

• Could have security issues in Walnut

Revision Tracking

Especially useful when we have more dirty objects than RAM, we have the last
consistent version tagged as CONSISTENT and our current ‘dirty’ version tagged as
non-consistent so that in the event of a crash, the consistent one is restored.

30

Status
Linux

Filesystem
Interface

Walnut
Interface

Transactional Object Store

Raw attribute=>data store

Block Device
Simulator

Real Block
Device

Green: mostly implemented
yellow: designing.
Walnut interface: not going to worry about (yet)
real block device: they exist

31

• Started design document of disk format

• More notes that require formalizing.

• Have working simulator of Linux buffer
cache (block device interface)

Status

32

Answers?
(I refuse to have a “Questions” slide :)

33

