Introduction to File Systems

Stewart Smith
(stewart@tlamingspork.com)

Also known as:
Vice President, Linux Australia (stewart@linux.org.au)

Software Engineer, MySQL AB (stewart@mysql.com)

The importance of speed

e How fast 1s a CPU?
e How fast 1s CPU cache?
e How fastis RAM?

e How fast 1s disk?

Relative Disk Speed

e Laptop: 24MB/sec
* Desktop: SOMB/sec

Most expensive operation?

* In an entire computer, the most expensive
operation 1s:

— A disk seek

Plaller

Cylinder group

Reads and writes

* Since seeking 1s expensive, when we do seek
— we want to read (or write) as much data as possible.
* Big block sizes are good for this

— BSD FFS got a lot of its speed from this.

Got the physics?

e Good...

— now for more fancy stuff

Many File Systems to choose from

e FES, LES, UFS, FAT(12,16,32), NTFS, ext,
ext2e ext3, reiserts, reiserd, xts, jis, HFS, HFS+,
BeFS, WinFS, LFFS

* Similar ideas 1n other systems:

— Databases

— Data files

The 1-node

e An i1-node describes a file

* A directory 1s a special case of a file
— Contains a list of name,1-node number pairs

* Superblock contains the 1-node number of the
root directory

Data in an 1-node

Mode (chmod)
owner, group
timestamps
s1ze

some directions to find out how to get the content
of the inode

extended attributes information

BSD FFS

e Where we learnt how to run

e Featured:
— Larger block sizes (4096 bytes)

— use of cylinder groups to exploit the physical
properties of disks

— 1improved reliability through careful ordering of meta-
data writes.

e Paper published in 1984

Block Addressing

e Both FFS and ext2 do this:

£
inode /
Intos W
1/

Direct blocks

Indirect Blocks

Double indicect
blocks

On disk format

* Super block

e Cylinder groups
— Redundant copy of super block
— block bitmap
— 1node table

— data area

/unix lookup

Read superblock

seek to location of root 1-node (and read)

seek to location of root 1-node data blocks (and
read)

linear search for 'unix'
seek to location of /unix 1-node (and read)

seek to location of /unix data blocks (and read)

Consistency (Reliability)

* FFS was synchronous
- slow

* cxt2 wasn't
— fast, but easier to loose data

* Soft Updates fixed 1t for FreeBSD
— carefully ordered meta data writes

e cxt3 fixed 1t for ext2

— addition of meta-data journalling

Downsides to reliability

e Soft Updates
— still needs background fsck to reclaim lost disk blocks
* Journaling (ext3)

— normally a performance penalty

* although smart ordering of writes can increase performance

Downsides to FFS/ext[23]

e Each file (on average) wastes 0.5 disk blocks
— really only ext2. FFS splits up

e Seek intensive
e Number of inodes 1s decided at mkfs time!
e Volume resizes are 10 intensive

* Sucky performance on large files

Performance improvements

e Other people have solved some problems.

 Dynamically allocated inodes

- e.g. XFS allocates inodes as you need them (in
chunks)

* Put 1-nodes and data together
* tail packing of files

— reiserfs (esp reiserd) will pack small files into a single
block.

Block Addressing

e Extents!
— From block n, m blocks belong to this file
* XFS

— store extents in the inode

— 1f file has lots of extents, B+Tree
e reiserd

— extents also

Block Allocation

* Extending a file
— 1deally you just add blocks to the end
* Searching a block bitmap 1s a bit tricky

e XFS

— two B+Trees of free extents
* Ordered by start block
* Ordered by size

e Pre-allocation

Directories

e XFS

— For directories with many items, index them!
* ext3 htrees help

— but not perfect

Extended Attributes

e reiserfs doesn't do them

— Hans Reiser thinks the API sucks
* he's right, but....

e ext3 does them
— 1n a different block than the inode

e XFS does them
— 1n the 1-node (if they fit)

WAFL Snapshots/atomicity

(a) Betore Snapshot (b) After Snapshot (c1 Atter Block Update

Koot Mew Root Maw Root
Inode Snapshat Tnode S napshot Inode

So what should you use?

e Flame retardant underwear

