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Databases

● MySQL
● InnoDB

● MySQL Cluster (NDB)
● HA Clustered Database

● Drizzle



  

What is MySQL

● This small database that is used by a couple of 
people



  

What is MySQL Cluster?
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http://www.flickr.com/photos/xjs-khaos/520473155/
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Checkpointing

● Checkpoint to disk
● On Cluster failure,

● Recover to previous Global CheckPoint (GCP)
● GCP is a Local Check Point (LCP) + REDO
● Disk data is Data + UNDO
● Durability is 2PC across replicas

● Txn committed when in memory on all replicas



  

Memory allocation

● Since in memory data, malloc() large amounts
● Deterministic means not swapping
● Lock pgaes
● 32GB machine

● 31.5GB locked



  

Disk IO

● IO with that much locked memory
● O_DIRECT
● Fsync() latency

● consistency



  

Network IO

● Sometimes...
● 1 CPU for network interrupts
● Spinning better than waiting for IO
● Must run DB on different CPUs than network 

interrupts
● Bind specific threads to specific CPUs



  

Drizzle Goals

● Pluggable
● Infrastructure Aware
● Multi core/concurrency
● Focus on Web Applications

● Enable others
● Modernise codebase for Managability

● C++, STL, reuse libraries
● Infrastructure database



  

Sun's Team Values

● Have open and well documented interfaces
● Have transparent goals and processes, that are 

communicated publicly
● Have fun and encourage collaboration
● Remove barriers to contribution and 

participation for anyone
● Enable contributors to build a business around 

Drizzle



  

Target OSs

● Linux x86-64, x86 also PowerPC, SPARC
● Solaris

● OpenSolaris (x86 and SPARC)
● Solaris 10

● MacOS X
● Don't care for production, just devs

● Wishlist: OpenBSD, FreeBSD



  

What does a web site do to a 
database?

● 1000 simultaneous connections not uncommon
● 10,000 also exists
● TCP versus UDS
● select(), poll(), epoll()

● Everybody having their own epoll() is not helpful
● Or different behaviour

● Pluggable schedulers
● Thread-per-connection
● Pool-of-threads



  

Length of connections

● Good web pages <5 SQL queries



  

Improving Scheduler

● Pool of threads switches execution on blocking 
network IO
● Blocking disk io....
● Moving from thread-per-connection model to 

something else
● getcontext(), setcontext()



  

InnoDB and IO

● O_DIRECT from buffer pool
● Data files, log files
● Sometimes file-per-table
● Preallocation
● fsync()



  

#ifdef HAVE_DARWIN_THREADS
# ifdef F_FULLFSYNC
   /* This executable has been compiled on Mac OS X 10.3 or later.
   Assume that F_FULLFSYNC is available at run-time. */
   srv_have_fullfsync = TRUE;
# else /* F_FULLFSYNC */
   /* This executable has been compiled on Mac OS X 10.2
   or earlier.  Determine if the executable is running
   on Mac OS X 10.3 or later. */
   struct utsname utsname;
   if (uname(&utsname)) {
      fputs("InnoDB: cannot determine Mac OS X version!\n", stderr);
   } else {
      srv_have_fullfsync = strcmp(utsname.release, "7.") >= 0;
   }
   if (!srv_have_fullfsync) {
      fputs("InnoDB: On Mac OS X, fsync() may be"
            " broken on internal drives,\n"
            "InnoDB: making transactions unsafe!\n", stderr);
   }
# endif /* F_FULLFSYNC */
#endif /* HAVE_DARWIN_THREADS */



  

#if defined(HAVE_DARWIN_THREADS)
# ifndef F_FULLFSYNC
        /* The following definition is from the Mac OS X 10.3 <sys/fcntl.h> */
#  define F_FULLFSYNC 51 /* fsync + ask the drive to flush to the media */
# elif F_FULLFSYNC != 51
#  error "F_FULLFSYNC != 51: ABI incompatibility with Mac OS X 10.3"
# endif
        /* Apple has disabled fsync() for internal disk drives in OS X. That
        caused corruption for a user when he tested a power outage. Let us in
        OS X use a nonstandard flush method recommended by an Apple
        engineer. */

        if (!srv_have_fullfsync) {
                /* If we are not on an operating system that supports this,
                then fall back to a plain fsync. */

                ret = fsync(file);
        } else {
                                ret = fcntl(file, F_FULLFSYNC, NULL);ret = fcntl(file, F_FULLFSYNC, NULL);

                if (ret) {
                        /* If we are not on a file system that supports this,
                        then fall back to a plain fsync. */
                        ret = fsync(file);
                }
        }
#elif HAVE_FDATASYNC
        ret = fdatasync(file);
#else
        /*      fprintf(stderr, "Flushing to file %p\n", file); */
        ret = fsync(file);
#endif



  

Replication (MySQL)

● Linear (buffered) writes
● Constantly extending file

● Limit on file size
● Deletes old files



  

Replication (Drizzle)

● We have the opportunity to get it right
● i.e. avoiding the file system as much as possible



  

Virtualization



  

Virtualization

● Is a fad



  

Virtualization

● Is a fad
● Single digit perf drops across 1000s of 

machines....



  

Future Directions

● MySQL/Drizzle
● SSD

– TRIM
● Higher CPU counts
● More parallel IO
● Many low cost machines, not few big ones

● NDB (MySQL Cluster)
● Ever increasing main memory
● Mix of machine sizes
● More cores



  

Summary

● Different interfaces across OSs is annoying
● Especially if you're not Linux

● We don't trust VM: O_DIRECT it is
● Lots of pages locked (buffer pool)
●

● fsync() must work
● Many TCP connections (think 1,000-10,000)

● Which can be many threads



  

Drizzle

● http://drizzle.org/
● #drizzle on FreeNode
● Automated performance graphs

● http://drizzle.org/performance/
● Buildbot
● Hudson

http://drizzle.org/
http://drizzle.org/performance/


  

Q&A
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