

(Ab)use the Kernel:
What a database server can do to

your kernel

Stewart Smith
Core Drizzle Developer
Sun Microsystems Inc

Kernel Conference
Australia 2009

Brisbane, 15-17 July

(Ab)use the Kernel:
What a database server can do to

your kernel

Stewart Smith
Dark Lord of the Drizzle Kernel
Sun Microsystems Inc

Kernel Conference
Australia 2009

Brisbane, 15-17 July

Databases

● MySQL
● InnoDB

● MySQL Cluster (NDB)
● HA Clustered Database

● Drizzle

What is MySQL

● This small database that is used by a couple of
people

What is MySQL Cluster?

Application

MySQL Server

Storage Engine API

MyISAM InnoDB NDB Falcon

Application Application Application

INSERT UPDATE DELETE CREATE

Cluster

mysqld
mysqld mysqld

NDB API
NDB API

INSERT UPDATE
DELETE

PHP mysql Ruby
.NET Mono

Perl

update() update()

Data
Nodes

Management Server

Mgm
client

http://www.flickr.com/photos/xjs-khaos/520473155/

Row

on disk part

in memory part

Checkpointing

● Checkpoint to disk
● On Cluster failure,

● Recover to previous Global CheckPoint (GCP)
● GCP is a Local Check Point (LCP) + REDO
● Disk data is Data + UNDO
● Durability is 2PC across replicas

● Txn committed when in memory on all replicas

Memory allocation

● Since in memory data, malloc() large amounts
● Deterministic means not swapping
● Lock pgaes
● 32GB machine

● 31.5GB locked

Disk IO

● IO with that much locked memory
● O_DIRECT
● Fsync() latency

● consistency

Network IO

● Sometimes...
● 1 CPU for network interrupts
● Spinning better than waiting for IO
● Must run DB on different CPUs than network

interrupts
● Bind specific threads to specific CPUs

Drizzle Goals

● Pluggable
● Infrastructure Aware
● Multi core/concurrency
● Focus on Web Applications

● Enable others
● Modernise codebase for Managability

● C++, STL, reuse libraries
● Infrastructure database

Sun's Team Values

● Have open and well documented interfaces
● Have transparent goals and processes, that are

communicated publicly
● Have fun and encourage collaboration
● Remove barriers to contribution and

participation for anyone
● Enable contributors to build a business around

Drizzle

Target OSs

● Linux x86-64, x86 also PowerPC, SPARC
● Solaris

● OpenSolaris (x86 and SPARC)
● Solaris 10

● MacOS X
● Don't care for production, just devs

● Wishlist: OpenBSD, FreeBSD

What does a web site do to a
database?

● 1000 simultaneous connections not uncommon
● 10,000 also exists
● TCP versus UDS
● select(), poll(), epoll()

● Everybody having their own epoll() is not helpful
● Or different behaviour

● Pluggable schedulers
● Thread-per-connection
● Pool-of-threads

Length of connections

● Good web pages <5 SQL queries

Improving Scheduler

● Pool of threads switches execution on blocking
network IO
● Blocking disk io....
● Moving from thread-per-connection model to

something else
● getcontext(), setcontext()

InnoDB and IO

● O_DIRECT from buffer pool
● Data files, log files
● Sometimes file-per-table
● Preallocation
● fsync()

#ifdef HAVE_DARWIN_THREADS
ifdef F_FULLFSYNC
 /* This executable has been compiled on Mac OS X 10.3 or later.
 Assume that F_FULLFSYNC is available at run-time. */
 srv_have_fullfsync = TRUE;
else /* F_FULLFSYNC */
 /* This executable has been compiled on Mac OS X 10.2
 or earlier. Determine if the executable is running
 on Mac OS X 10.3 or later. */
 struct utsname utsname;
 if (uname(&utsname)) {
 fputs("InnoDB: cannot determine Mac OS X version!\n", stderr);
 } else {
 srv_have_fullfsync = strcmp(utsname.release, "7.") >= 0;
 }
 if (!srv_have_fullfsync) {
 fputs("InnoDB: On Mac OS X, fsync() may be"
 " broken on internal drives,\n"
 "InnoDB: making transactions unsafe!\n", stderr);
 }
endif /* F_FULLFSYNC */
#endif /* HAVE_DARWIN_THREADS */

#if defined(HAVE_DARWIN_THREADS)
ifndef F_FULLFSYNC
 /* The following definition is from the Mac OS X 10.3 <sys/fcntl.h> */
define F_FULLFSYNC 51 /* fsync + ask the drive to flush to the media */
elif F_FULLFSYNC != 51
error "F_FULLFSYNC != 51: ABI incompatibility with Mac OS X 10.3"
endif
 /* Apple has disabled fsync() for internal disk drives in OS X. That
 caused corruption for a user when he tested a power outage. Let us in
 OS X use a nonstandard flush method recommended by an Apple
 engineer. */

 if (!srv_have_fullfsync) {
 /* If we are not on an operating system that supports this,
 then fall back to a plain fsync. */

 ret = fsync(file);
 } else {
 ret = fcntl(file, F_FULLFSYNC, NULL);ret = fcntl(file, F_FULLFSYNC, NULL);

 if (ret) {
 /* If we are not on a file system that supports this,
 then fall back to a plain fsync. */
 ret = fsync(file);
 }
 }
#elif HAVE_FDATASYNC
 ret = fdatasync(file);
#else
 /* fprintf(stderr, "Flushing to file %p\n", file); */
 ret = fsync(file);
#endif

Replication (MySQL)

● Linear (buffered) writes
● Constantly extending file

● Limit on file size
● Deletes old files

Replication (Drizzle)

● We have the opportunity to get it right
● i.e. avoiding the file system as much as possible

Virtualization

Virtualization

● Is a fad

Virtualization

● Is a fad
● Single digit perf drops across 1000s of

machines....

Future Directions

● MySQL/Drizzle
● SSD

– TRIM
● Higher CPU counts
● More parallel IO
● Many low cost machines, not few big ones

● NDB (MySQL Cluster)
● Ever increasing main memory
● Mix of machine sizes
● More cores

Summary

● Different interfaces across OSs is annoying
● Especially if you're not Linux

● We don't trust VM: O_DIRECT it is
● Lots of pages locked (buffer pool)
●

● fsync() must work
● Many TCP connections (think 1,000-10,000)

● Which can be many threads

Drizzle

● http://drizzle.org/
● #drizzle on FreeNode
● Automated performance graphs

● http://drizzle.org/performance/
● Buildbot
● Hudson

http://drizzle.org/
http://drizzle.org/performance/

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

